Finite System-size Effects in Self-organized Criticality Systems

We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-03, Vol.909 (1), p.69
1. Verfasser: Aschwanden, Markus J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to L ≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of E ≈ 10 34 –10 37 erg, finite system-size ranges of E ≈ 10 37 –10 38 erg, and extreme events at E ≈ (1–5) × 10 38 erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abda48