Quadratic hyper-surface kernel-free least squares support vector regression
We present a novel kernel-free regressor, called quadratic hyper-surface kernel-free least squares support vector regression (QLSSVR), for some regression problems. The task of this approach is to find a quadratic function as the regression function, which is obtained by solving a quadratic programm...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2021-03, Vol.25 (2), p.265-281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel kernel-free regressor, called quadratic hyper-surface kernel-free least squares support vector regression (QLSSVR), for some regression problems. The task of this approach is to find a quadratic function as the regression function, which is obtained by solving a quadratic programming problem with the equality constraints. Basically, the new model just needs to solve a system of linear equations to achieve the optimal solution instead of solving a quadratic programming problem. Therefore, compared with the standard support vector regression, our approach is much efficient due to kernel-free and solving a set of linear equations. Numerical results illustrate that our approach has better performance than other existing regression approaches in terms of regression criterion and CPU time. |
---|---|
ISSN: | 1088-467X 1571-4128 |
DOI: | 10.3233/IDA-205094 |