Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

Poly­(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHBH or PHBHHx, is a novel bio-based polymer that is biodegradable in both soil and marine environments. While bio-based and biodegradability are often celebrated features to mitigate environmental problems of plastics, their life cycle environmental i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-03, Vol.55 (5), p.3380-3388
Hauptverfasser: Amasawa, Eri, Yamanishi, Tomoki, Nakatani, Jun, Hirao, Masahiko, Sato, Shunsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly­(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHBH or PHBHHx, is a novel bio-based polymer that is biodegradable in both soil and marine environments. While bio-based and biodegradability are often celebrated features to mitigate environmental problems of plastics, their life cycle environmental impacts contain uncertainties that are yet to be fully understood. To develop effective introduction schemes for PHBH, this study assessed the life cycle climate change implications of PHBH. We computed the life cycle greenhouse gas emissions (GHG) and fossil resource consumption of produce bags and spoons composed of PHBH and their fossil-based alternatives based on industrial-scale data. The products were assessed against 10 end-of-life scenarios for commercial plastics. As a result, the cradle-to-gate GHG of PHBH ranged between 0.32 and 16.5 kgCO2e/kg-PHBH depending on the land-use change assumed for the biomass production. The product-based comparative analysis presented that PHBH spoons have lower cradle-to-grave GHG emissions over their fossil-based alternatives but not with produce bags because PHBH spoons have a smaller GHG per functional unit than that of its fossil counterpart. The end-of-life scenario analysis conveyed that PHBH should be introduced to a region with a plastic waste management system that avoids methane generation and facilitates energy recovery.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.0c06612