Designing dual-chirality and multi-Vt repeaters for performance optimization of 32 nm interconnects
Purpose This paper is an unprecedented effort to resolve the performance issue of very large scale integrated circuits (VLSI) interconnects encountered because of the scaling of device dimensions. Repeater interpolation technique is an effective approach for enhancing speed of interconnect network....
Gespeichert in:
Veröffentlicht in: | Circuit world 2020-04, Vol.46 (2), p.71-83 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This paper is an unprecedented effort to resolve the performance issue of very large scale integrated circuits (VLSI) interconnects encountered because of the scaling of device dimensions. Repeater interpolation technique is an effective approach for enhancing speed of interconnect network. Proposed buffers as repeater are modeled by using dual chirality multi-Vt technology to reduce delay besides mitigating average power consumption. Interconnects modeled with carbon nanotube (CNT) technology are compared with copper interconnect for various lengths. Buffer circuits are designed with both CNT and metal oxide semiconductor technology for comparison by using various combination of (CMOSFET repeater-Cu interconnect) and (CNTFET repeater-CNT interconnect). Compared to conventional buffer, ProposedBuffer1 saves dynamic power by 84.86%, leakage power by 88% and offers reduction in delay by 72%. ProposedBuffer2 brings about dynamic power saving of 99.94%, leakage power saving of 93%, but causes delay penalty. Simulation using Stanford SPICE model for CNT and silicon-field effective transistor berkeley short-channel IGFET Model4 (BSIM4) predictive technology model (PTM) for MOS is done in H simulation program with integrated circuit emphasis for 32 nm.
Design/methodology/approach
Usually, the dynamic power consumption dominates the total power, while the leakage power has a negligible effect. But with the scaling of device technology, leakage power has become one of the important factors of consideration in low power design techniques. Various strategies are explored to suppress the leakage power in standby mode. The adoption of a multi-threshold design strategy is an effective approach to improve the performance of buffer circuits without compromising on the delay and area overhead. Unlike MOS technology, to implement multi-Vt transistors in case of CNT technology is quite easy. It can be achieved by varying diameter of carbon nanotubes using chirality control.
Findings
An unprecedented approach is taken for optimizing the delay and power dissipation and hence drastically reducing energy consumption by keeping proper harmony between wire technology and repeater-buffer technology. This paper proposes two novel ultra-low power buffers (PB1 and PB2) as repeaters for high-speed interconnect applications in portable devices. PB1 buffer implemented with high-speed CML technique nested with multi-threshold (Vt) technology sleep transistor so as to improve the s |
---|---|
ISSN: | 0305-6120 1758-602X |
DOI: | 10.1108/CW-06-2019-0060 |