Behavioral Modeling for Microgrid Simulation
Trends in power system simulation that demand computationally-intensive, physics-based models may impede the acquisition of useful results for applications like condition-based maintenance, electrical plant load analysis (EPLA), and the scheduling and tasking of finite generation and distribution re...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.35633-35645 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trends in power system simulation that demand computationally-intensive, physics-based models may impede the acquisition of useful results for applications like condition-based maintenance, electrical plant load analysis (EPLA), and the scheduling and tasking of finite generation and distribution resources. A tool that can quickly evaluate many scenarios, as opposed to intense, high fidelity modeling of a single operating scenario, may best serve these applications. This paper presents a behavioral simulator that can quickly emulate the operation of a relatively large collection of electrical loads, providing "what-if" evaluations of various operating scenarios and conditions for more complete exploration of a design or plant operating envelope. The presented simulator can provide time-series data of power system operation under loading conditions and usage assumptions of interest. Comparisons to field data collected from a microgrid on-board a 270-foot (82 meter) US Coast Guard medium-endurance cutter demonstrate the utility of this tool and approach. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3061891 |