A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation
Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2021-04, Vol.476 (4), p.1939-1948 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was modified by hydrophobins, and the different addition ratios were explored. Moreover, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements indicated that hydrophobins effectively bind to menaquinone-7 and greatly increase the hydrophilicity of the surface of menaquinone-7. Studies on the metabolism of MC3T3-E1 cells showed that compared with native menaquinone-7, HGFI-modified menaquinone-7 can significantly promote osteoblast differentiation but inhibit osteoclast differentiation. Besides, the Mito-Tracker Green experiments show that HGFI-modified menaquinone-7 can significantly promote the activity of mitochondria in cells. These findings indicate that hydrophobins can be used as an effective biomaterial to modify menaquinone-7, promote the formation of osteoblasts, and better to bone balance. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-021-04062-z |