Two-step homogeneous geodesics in pseudo-Riemannian manifolds

Given a homogeneous pseudo-Riemannian space ( G / H , ⟨ , ⟩ ) , a geodesic γ : I → G / H is said to be two-step homogeneous if it admits a parametrization t = ϕ ( s ) ( s affine parameter) and vectors X ,  Y in the Lie algebra g , such that γ ( t ) = exp ( t X ) exp ( t Y ) · o , for all t ∈ ϕ ( I )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2021-04, Vol.59 (3), p.297-317
Hauptverfasser: Arvanitoyeorgos, Andreas, Calvaruso, Giovanni, Souris, Nikolaos Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a homogeneous pseudo-Riemannian space ( G / H , ⟨ , ⟩ ) , a geodesic γ : I → G / H is said to be two-step homogeneous if it admits a parametrization t = ϕ ( s ) ( s affine parameter) and vectors X ,  Y in the Lie algebra g , such that γ ( t ) = exp ( t X ) exp ( t Y ) · o , for all t ∈ ϕ ( I ) . As such, two-step homogeneous geodesics are a natural generalization of homogeneous geodesics (i.e., geodesics which are orbits of a one-parameter group of isometries). We obtain characterizations of two-step homogeneous geodesics, both for reductive homogeneous spaces and in the general case, and undertake the study of two-step g.o. spaces, that is, homogeneous pseudo-Riemannian manifolds all of whose geodesics are two-step homogeneous. We also completely determine the left-invariant metrics ⟨ , ⟩ on the unimodular Lie group S L ( 2 , R ) such that ( S L ( 2 , R ) , ⟨ , ⟩ ) is a two-step g.o. space.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-020-09751-4