Two-step homogeneous geodesics in pseudo-Riemannian manifolds
Given a homogeneous pseudo-Riemannian space ( G / H , ⟨ , ⟩ ) , a geodesic γ : I → G / H is said to be two-step homogeneous if it admits a parametrization t = ϕ ( s ) ( s affine parameter) and vectors X , Y in the Lie algebra g , such that γ ( t ) = exp ( t X ) exp ( t Y ) · o , for all t ∈ ϕ ( I )...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2021-04, Vol.59 (3), p.297-317 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a homogeneous pseudo-Riemannian space
(
G
/
H
,
⟨
,
⟩
)
,
a geodesic
γ
:
I
→
G
/
H
is said to be two-step homogeneous if it admits a parametrization
t
=
ϕ
(
s
)
(
s
affine parameter) and vectors
X
,
Y
in the Lie algebra
g
, such that
γ
(
t
)
=
exp
(
t
X
)
exp
(
t
Y
)
·
o
, for all
t
∈
ϕ
(
I
)
. As such, two-step homogeneous geodesics are a natural generalization of homogeneous geodesics (i.e., geodesics which are orbits of a one-parameter group of isometries). We obtain characterizations of two-step homogeneous geodesics, both for reductive homogeneous spaces and in the general case, and undertake the study of two-step g.o. spaces, that is, homogeneous pseudo-Riemannian manifolds all of whose geodesics are two-step homogeneous. We also completely determine the left-invariant metrics
⟨
,
⟩
on the unimodular Lie group
S
L
(
2
,
R
)
such that
(
S
L
(
2
,
R
)
,
⟨
,
⟩
)
is a two-step g.o. space. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-020-09751-4 |