Biomineralization inspired engineering of nanobiomaterials promoting bone repair

A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2021-01, Vol.120, p.111776, Article 111776
Hauptverfasser: Oliveira, Francilio Carvalho, Carvalho, Jancineide Oliveira, Magalhães, Leila S.S.M., da Silva, Juliana Marques, Pereira, Saronny Rose, Gomes Júnior, Antonio Luiz, Soares, Liana Martha, Cariman, Laynna Ingrid Cruz, da Silva, Ruan Inácio, Viana, Bartolomeu C., Silva-Filho, Edson Cavalcanti, Afewerki, Samson, da Cunha, Helder Nunes, Vega, Maria Leticia, Marciano, Fernanda Roberta, Lobo, Anderson Oliveira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapatite (nHA). Various scaffolds were devised [nHA/PLA, PLA/GNR, and PLA/nHA/GNR (1 and 3%)] and their structure and morphology characterized through Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Atomic force microscope (AFM). Moreover, thorough biocompatibility and toxicity studies were performed. Here, in vivo studies on toxicity and cytotoxicity were conducted in aqueous dispersions of the biomaterials at concentrations of 30, 60, and 120 μg/mL using the Allium cepa test. Further toxicity studies were performed through hemolysis toxicity tests and genotoxicity tests evaluating the damage index and damage frequencies of DNAs through comet assays with samples of the animals' peripheral blood, marrow, and liver. Additionally, the regenerative activity of the scaffolds was analyzed by measuring the cortical tibiae of rats oophorectomized implanted with the biomaterials. Biochemical analyzes [glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea, calcium, phosphorus, and alkaline phosphatase (ALP)] were also performed on blood samples. The results suggested a toxicity and cytotoxicity level for the GNR biomaterials at a concentration of 60 and 120 μg/mL, but non-toxicity and cytotoxicity for the 30 μg/mL concentration. The scaffolds obtained at a concentration of 0.3 mg/cm2 were not toxic in the hemolysis test and demonstrated no cytotoxicity, genotoxicity, and mutagenicity in the blood, marrow, and liver analyzes of the animals, corroborating data from the biochemical markers of GPT, GOT, and urea. Tissue regeneration was performed in all groups and was more pronounced in the group containing the combination of nHA/GNR (3%), which is consistent with the data obtained for the calcium, serum phosphorus, and ALP concentrations. Consequently, the study indicates that the engineered nanobiomaterial is a promising candidate for bone tissue repair and regenerative applications. The scientific contribution of this study is the engineering of a synthetic hybrid biomaterial, in nanoscale by a pressing and heating process. A biodegradable polymeric matrix was covered on both sides with a carbonated hybrid bioce
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2020.111776