A q-Atomic Decomposition of Weighted Tent Spaces on Spaces of Homogeneous Type and Its Application
The theory of tent spaces on R n was introduced by Coifman, Meyer and Stein, including atomic decomposition, duality theory and so on. Russ generalized the atomic decomposition for tent spaces to the case of spaces of homogeneous type ( X , d , μ ) . The main purpose of this paper is to extend the r...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-03, Vol.31 (3), p.3029-3059, Article 3029 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theory of tent spaces on
R
n
was introduced by Coifman, Meyer and Stein, including atomic decomposition, duality theory and so on. Russ generalized the atomic decomposition for tent spaces to the case of spaces of homogeneous type
(
X
,
d
,
μ
)
. The main purpose of this paper is to extend the results of Coifman, Meyer, Stein and Russ to weighted version. More precisely, we obtain a
q
-atomic decomposition for the weighted tent spaces
T
2
,
w
p
(
X
)
, where
0
<
p
≤
1
,
1
<
q
<
∞
,
and
w
∈
A
∞
. As an application, we give an atomic decomposition for weighted Hardy spaces associated to non-negative self-adjoint operators on
X
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00382-6 |