Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows

By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-03, Vol.914, Article A6
Hauptverfasser: Clark Di Leoni, Patricio, Zaki, Tamer A., Karniadakis, George, Meneveau, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 914
creator Clark Di Leoni, Patricio
Zaki, Tamer A.
Karniadakis, George
Meneveau, Charles
description By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0
doi_str_mv 10.1017/jfm.2020.977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496958602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_977</cupid><sourcerecordid>2496958602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-52005efffaabfd4ab69becc8b8e63eb976547bfc4b0a3b8b6cd9cd2ff639371c3</originalsourceid><addsrcrecordid>eNptkMtKAzEUQIMoWKs7P2DArak3mZlkspTiCwpu6jrkKVOmSU1mLN35D_6hX-KUFty4undx7rlwELomMCNA-N3Kr2cUKMwE5ydoQiomMGdVfYomAJRiQiico4ucVwCkBMEnyC63EW9iG_oi98nl_PP1PS6qDTip3hUmpuQ61bcx7IHB9ENyhQq2CDHgLhrVFc7aXfHZZhNz2--KNhQjpIfOjVLfxW2-RGdeddldHecUvT0-LOfPePH69DK_X2BTAetxTQFq571XSntbKc2EdsY0unGsdFpwVldce1NpUKVuNDNWGEu9Z6UoOTHlFN0cvJsUPwaXe7mKQwrjS0krwUTdMKAjdXugTIo5J-flJrVrlXaSgNx3lGNHue8ox44jPjviaq1Ta9_dn_Xfg195h3nB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496958602</pqid></control><display><type>article</type><title>Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows</title><source>Cambridge University Press Journals Complete</source><creator>Clark Di Leoni, Patricio ; Zaki, Tamer A. ; Karniadakis, George ; Meneveau, Charles</creator><creatorcontrib>Clark Di Leoni, Patricio ; Zaki, Tamer A. ; Karniadakis, George ; Meneveau, Charles</creatorcontrib><description>By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0&lt;\alpha &lt;1$ (where $\alpha$ is the fractional gradient order) rather than the classical gradient corresponding to $\alpha =1$. Analyses of such correlation functions are presented for various orders of the fractional-gradient operators. It is found that in isotropic turbulence fractional derivative order $\alpha \sim 0.5$ yields best results, while for channel flow $\alpha \sim 0.2$ yields better results for the correlations in the streamwise direction, even well into the core channel region. In the spanwise direction, channel flow results show significantly more local interactions. The overall results confirm strong non-locality in the interactions between subfilter stresses and resolved-scale fluid deformation rates, but with non-trivial directional dependencies in non-isotropic flows. Hence, non-local operators thus exhibit interesting modelling capabilities and potential for large-eddy simulations although more developments are required, both on the theoretical and computational implementation fronts.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.977</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channel flow ; Computational fluid dynamics ; Computer applications ; Correlation analysis ; Deformation ; Direct numerical simulation ; Direction ; Eddy viscosity ; Energy ; Fluid flow ; Fronts ; Isotropic turbulence ; JFM Papers ; Large eddy simulation ; Mathematical analysis ; Oceanic eddies ; Operators (mathematics) ; Statistical analysis ; Strain ; Strain rate ; Stress tensors ; Tensors ; Turbulence ; Turbulence models ; Turbulent flow ; Velocity ; Velocity distribution ; Viscosity ; Vortices</subject><ispartof>Journal of fluid mechanics, 2021-03, Vol.914, Article A6</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-52005efffaabfd4ab69becc8b8e63eb976547bfc4b0a3b8b6cd9cd2ff639371c3</citedby><cites>FETCH-LOGICAL-c406t-52005efffaabfd4ab69becc8b8e63eb976547bfc4b0a3b8b6cd9cd2ff639371c3</cites><orcidid>0000-0003-3789-3466 ; 0000-0002-9713-7120 ; 0000-0002-1979-7748 ; 0000-0001-6947-3605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020009775/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Clark Di Leoni, Patricio</creatorcontrib><creatorcontrib>Zaki, Tamer A.</creatorcontrib><creatorcontrib>Karniadakis, George</creatorcontrib><creatorcontrib>Meneveau, Charles</creatorcontrib><title>Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0&lt;\alpha &lt;1$ (where $\alpha$ is the fractional gradient order) rather than the classical gradient corresponding to $\alpha =1$. Analyses of such correlation functions are presented for various orders of the fractional-gradient operators. It is found that in isotropic turbulence fractional derivative order $\alpha \sim 0.5$ yields best results, while for channel flow $\alpha \sim 0.2$ yields better results for the correlations in the streamwise direction, even well into the core channel region. In the spanwise direction, channel flow results show significantly more local interactions. The overall results confirm strong non-locality in the interactions between subfilter stresses and resolved-scale fluid deformation rates, but with non-trivial directional dependencies in non-isotropic flows. Hence, non-local operators thus exhibit interesting modelling capabilities and potential for large-eddy simulations although more developments are required, both on the theoretical and computational implementation fronts.</description><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Correlation analysis</subject><subject>Deformation</subject><subject>Direct numerical simulation</subject><subject>Direction</subject><subject>Eddy viscosity</subject><subject>Energy</subject><subject>Fluid flow</subject><subject>Fronts</subject><subject>Isotropic turbulence</subject><subject>JFM Papers</subject><subject>Large eddy simulation</subject><subject>Mathematical analysis</subject><subject>Oceanic eddies</subject><subject>Operators (mathematics)</subject><subject>Statistical analysis</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Stress tensors</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKAzEUQIMoWKs7P2DArak3mZlkspTiCwpu6jrkKVOmSU1mLN35D_6hX-KUFty4undx7rlwELomMCNA-N3Kr2cUKMwE5ydoQiomMGdVfYomAJRiQiico4ucVwCkBMEnyC63EW9iG_oi98nl_PP1PS6qDTip3hUmpuQ61bcx7IHB9ENyhQq2CDHgLhrVFc7aXfHZZhNz2--KNhQjpIfOjVLfxW2-RGdeddldHecUvT0-LOfPePH69DK_X2BTAetxTQFq571XSntbKc2EdsY0unGsdFpwVldce1NpUKVuNDNWGEu9Z6UoOTHlFN0cvJsUPwaXe7mKQwrjS0krwUTdMKAjdXugTIo5J-flJrVrlXaSgNx3lGNHue8ox44jPjviaq1Ta9_dn_Xfg195h3nB</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Clark Di Leoni, Patricio</creator><creator>Zaki, Tamer A.</creator><creator>Karniadakis, George</creator><creator>Meneveau, Charles</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3789-3466</orcidid><orcidid>https://orcid.org/0000-0002-9713-7120</orcidid><orcidid>https://orcid.org/0000-0002-1979-7748</orcidid><orcidid>https://orcid.org/0000-0001-6947-3605</orcidid></search><sort><creationdate>20210305</creationdate><title>Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows</title><author>Clark Di Leoni, Patricio ; Zaki, Tamer A. ; Karniadakis, George ; Meneveau, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-52005efffaabfd4ab69becc8b8e63eb976547bfc4b0a3b8b6cd9cd2ff639371c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Correlation analysis</topic><topic>Deformation</topic><topic>Direct numerical simulation</topic><topic>Direction</topic><topic>Eddy viscosity</topic><topic>Energy</topic><topic>Fluid flow</topic><topic>Fronts</topic><topic>Isotropic turbulence</topic><topic>JFM Papers</topic><topic>Large eddy simulation</topic><topic>Mathematical analysis</topic><topic>Oceanic eddies</topic><topic>Operators (mathematics)</topic><topic>Statistical analysis</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Stress tensors</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark Di Leoni, Patricio</creatorcontrib><creatorcontrib>Zaki, Tamer A.</creatorcontrib><creatorcontrib>Karniadakis, George</creatorcontrib><creatorcontrib>Meneveau, Charles</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark Di Leoni, Patricio</au><au>Zaki, Tamer A.</au><au>Karniadakis, George</au><au>Meneveau, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>914</volume><artnum>A6</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0&lt;\alpha &lt;1$ (where $\alpha$ is the fractional gradient order) rather than the classical gradient corresponding to $\alpha =1$. Analyses of such correlation functions are presented for various orders of the fractional-gradient operators. It is found that in isotropic turbulence fractional derivative order $\alpha \sim 0.5$ yields best results, while for channel flow $\alpha \sim 0.2$ yields better results for the correlations in the streamwise direction, even well into the core channel region. In the spanwise direction, channel flow results show significantly more local interactions. The overall results confirm strong non-locality in the interactions between subfilter stresses and resolved-scale fluid deformation rates, but with non-trivial directional dependencies in non-isotropic flows. Hence, non-local operators thus exhibit interesting modelling capabilities and potential for large-eddy simulations although more developments are required, both on the theoretical and computational implementation fronts.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.977</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3789-3466</orcidid><orcidid>https://orcid.org/0000-0002-9713-7120</orcidid><orcidid>https://orcid.org/0000-0002-1979-7748</orcidid><orcidid>https://orcid.org/0000-0001-6947-3605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-03, Vol.914, Article A6
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2496958602
source Cambridge University Press Journals Complete
subjects Channel flow
Computational fluid dynamics
Computer applications
Correlation analysis
Deformation
Direct numerical simulation
Direction
Eddy viscosity
Energy
Fluid flow
Fronts
Isotropic turbulence
JFM Papers
Large eddy simulation
Mathematical analysis
Oceanic eddies
Operators (mathematics)
Statistical analysis
Strain
Strain rate
Stress tensors
Tensors
Turbulence
Turbulence models
Turbulent flow
Velocity
Velocity distribution
Viscosity
Vortices
title Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-point%20stress%E2%80%93strain-rate%20correlation%20structure%20and%20non-local%20eddy%20viscosity%20in%20turbulent%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Clark%20Di%20Leoni,%20Patricio&rft.date=2021-03-05&rft.volume=914&rft.artnum=A6&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.977&rft_dat=%3Cproquest_cross%3E2496958602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496958602&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_977&rfr_iscdi=true