Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows
By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-03, Vol.914, Article A6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0 |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.977 |