Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements
In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regulariz...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.5188-5209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5209 |
---|---|
container_issue | 6 |
container_start_page | 5188 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Triet, Nguyen Anh Binh, Tran Thanh Phuong, Nguyen Duc Baleanu, Dumitru Can, Nguyen Huu |
description | In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method. |
doi_str_mv | 10.1002/mma.7102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496783802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496783802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-cc75c84d995793e2c8d835d932845ed5b3da9579833015421e02b67e52d217963</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoekD-gmCbrpxqodtWcsQ-oKEQmnXRpHGjYItJZKdkL-v3HTb1Qycwx3mInRHyZQSwh67Tk0FJewMTSiRMqO5KM_RhFBBspzR_BJdxbghhFSUsgnyH6D9HoJ137hfA7bO9la1eK_aAXDjA1Y4HmMPHfYNdt61XidsbNMM0XqHYTeoPi0RH2y_xkE547sk2gg44TGzAxWHAB24Pt6gi0a1EW7_5jX6en76nL9mi_eXt_lskWkmOcu0FoWuciNlISQHpitT8cIkVOUFmGLFjRpRxTmhRfoLCFuVAgpmGBWy5Nfo_pS7DX43QOzrjR-CSydrlstSVLwiLFkPJ0sHH2OApt4G26lwrCmpxzrrVGc91pnU7KQebAvHf716uZz9-j-wOHZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496783802</pqid></control><display><type>article</type><title>Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements</title><source>Wiley Online Library All Journals</source><creator>Triet, Nguyen Anh ; Binh, Tran Thanh ; Phuong, Nguyen Duc ; Baleanu, Dumitru ; Can, Nguyen Huu</creator><creatorcontrib>Triet, Nguyen Anh ; Binh, Tran Thanh ; Phuong, Nguyen Duc ; Baleanu, Dumitru ; Can, Nguyen Huu</creatorcontrib><description>In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7102</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Error analysis ; Ill‐posed problem ; Nonlocal diffusion ; Random noise ; Regularized solution</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5188-5209</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-cc75c84d995793e2c8d835d932845ed5b3da9579833015421e02b67e52d217963</citedby><cites>FETCH-LOGICAL-c2932-cc75c84d995793e2c8d835d932845ed5b3da9579833015421e02b67e52d217963</cites><orcidid>0000-0002-0286-7244 ; 0000-0001-6198-1015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Triet, Nguyen Anh</creatorcontrib><creatorcontrib>Binh, Tran Thanh</creatorcontrib><creatorcontrib>Phuong, Nguyen Duc</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Can, Nguyen Huu</creatorcontrib><title>Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements</title><title>Mathematical methods in the applied sciences</title><description>In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method.</description><subject>Error analysis</subject><subject>Ill‐posed problem</subject><subject>Nonlocal diffusion</subject><subject>Random noise</subject><subject>Regularized solution</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoekD-gmCbrpxqodtWcsQ-oKEQmnXRpHGjYItJZKdkL-v3HTb1Qycwx3mInRHyZQSwh67Tk0FJewMTSiRMqO5KM_RhFBBspzR_BJdxbghhFSUsgnyH6D9HoJ137hfA7bO9la1eK_aAXDjA1Y4HmMPHfYNdt61XidsbNMM0XqHYTeoPi0RH2y_xkE547sk2gg44TGzAxWHAB24Pt6gi0a1EW7_5jX6en76nL9mi_eXt_lskWkmOcu0FoWuciNlISQHpitT8cIkVOUFmGLFjRpRxTmhRfoLCFuVAgpmGBWy5Nfo_pS7DX43QOzrjR-CSydrlstSVLwiLFkPJ0sHH2OApt4G26lwrCmpxzrrVGc91pnU7KQebAvHf716uZz9-j-wOHZK</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Triet, Nguyen Anh</creator><creator>Binh, Tran Thanh</creator><creator>Phuong, Nguyen Duc</creator><creator>Baleanu, Dumitru</creator><creator>Can, Nguyen Huu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000-0001-6198-1015</orcidid></search><sort><creationdate>202104</creationdate><title>Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements</title><author>Triet, Nguyen Anh ; Binh, Tran Thanh ; Phuong, Nguyen Duc ; Baleanu, Dumitru ; Can, Nguyen Huu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-cc75c84d995793e2c8d835d932845ed5b3da9579833015421e02b67e52d217963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Error analysis</topic><topic>Ill‐posed problem</topic><topic>Nonlocal diffusion</topic><topic>Random noise</topic><topic>Regularized solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triet, Nguyen Anh</creatorcontrib><creatorcontrib>Binh, Tran Thanh</creatorcontrib><creatorcontrib>Phuong, Nguyen Duc</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Can, Nguyen Huu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triet, Nguyen Anh</au><au>Binh, Tran Thanh</au><au>Phuong, Nguyen Duc</au><au>Baleanu, Dumitru</au><au>Can, Nguyen Huu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>5188</spage><epage>5209</epage><pages>5188-5209</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7102</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000-0001-6198-1015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5188-5209 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2496783802 |
source | Wiley Online Library All Journals |
subjects | Error analysis Ill‐posed problem Nonlocal diffusion Random noise Regularized solution |
title | Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20the%20initial%20value%20for%20a%20system%20of%20nonlocal%20diffusion%20equations%20with%20random%20noise%20on%20the%20measurements&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Triet,%20Nguyen%20Anh&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=5188&rft.epage=5209&rft.pages=5188-5209&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7102&rft_dat=%3Cproquest_cross%3E2496783802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496783802&rft_id=info:pmid/&rfr_iscdi=true |