Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements

In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regulariz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.5188-5209
Hauptverfasser: Triet, Nguyen Anh, Binh, Tran Thanh, Phuong, Nguyen Duc, Baleanu, Dumitru, Can, Nguyen Huu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.7102