Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements
In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regulariz...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.5188-5209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the final value problem for a system of parabolic diffusion equations. In which, the final value functions are derived from a random model. This problem is severely ill‐posed in the sense of Hadamard. By nonparametric estimation and truncation methods, we offer a new regularized solution. We also investigate an estimate of the error and a convergence rate between a mild solution and its regularized solutions. Finally, some numerical experiments are constructed to confirm the efficiency of the proposed method. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.7102 |