A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens

Addressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021, Vol.13 (1), Article 18
Hauptverfasser: Yuan, Bing, Liu, Jiaojiao, Deng, Zhixiong, Wei, Lin, Li, Wenwen, Dou, Yujiang, Chen, Zhonglan, Zhang, Che, Xia, Yu, Wang, Jing, Zhang, Mengling, Yang, Kai, Ma, Yuqiang, Kang, Zhenhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Yuan, Bing
Liu, Jiaojiao
Deng, Zhixiong
Wei, Lin
Li, Wenwen
Dou, Yujiang
Chen, Zhonglan
Zhang, Che
Xia, Yu
Wang, Jing
Zhang, Mengling
Yang, Kai
Ma, Yuqiang
Kang, Zhenhui
description Addressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectures based on melittin (Mel), a natural antimicrobial peptide, and poly(ethylene glycol) (PEG), a clinically available agent, as building blocks that show potent and architecture-modulated antibacterial activity. Among the complexes, the flexibly linear complex consisting of one Mel terminally connected with a long-chained PEG (e.g., PEG 12k –1*Mel) shows the most pronounced improvement in performance compared with pristine Mel, with up to 500% improvement in antimicrobial efficiency, excellent in vitro activity against multidrug-resistant pathogens (over a range of minimal inhibitory concentrations of 2–32 µg mL −1 ), a 68% decrease in in vitro cytotoxicity, and a 57% decrease in in vivo acute toxicity. A lipid-specific mode of action in membrane recognition and an accelerated “channel” effect in perforating the bacterial membrane of the complex are described. Our results introduce a new way to design highly efficient and low-toxicity antimicrobial drugs based on architectural modulations with clinically available agents. Integration and design of existing function units into specialized architectures might show combined and even improved performances of the original components. Here we describe a serial of synthetic antibacterial complexes composed of melittin, a natural antimicrobial peptide, and poly(ethylene glycol), a clinical available agent, as building blocks, which show potent and architecture-modulated antibacterial activity against multidrug-resistant pathogens and decreased cytotoxicity.
doi_str_mv 10.1038/s41427-021-00287-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496731122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496731122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c0dac3c826e362ac639c99f59d962a1fd74c5201839eaade401c211cac9ce3c73</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOOj8AU8Bz63ZeslxGNxgwIueQ1md7snQm0la6H9vdERvnqoKvveq6hFyxdkNZ7K6DYorUWZM8IwxUZXZckJWvKpUplhenv72Sp-TdQgHxhgvClXlakX8hvZjZ3HuwFPwuHfRYpw9dLS2wbUDjXuIdPJj74INdBqjHSKFIbreoR_fXCIBo_twcaHQghtCpP3cRVf7uc18Mgkx4XSCuB9bO4RLctZAF-z6p16Q1_u7l-1jtnt-eNpudhkqxmKGrAaUWInCykIAFlKj1k2ua51G3tSlwlwwXkltAWqrGEfBOQJqtBJLeUGuj77p-PfZhmgO4-yHtNIIpYtSci5EosSRSs-E4G1jJu968IvhzHzFa47xmhSv-Y7XLEkkj6KQ4KG1_s_6H9Un81aBcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496731122</pqid></control><display><type>article</type><title>A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuan, Bing ; Liu, Jiaojiao ; Deng, Zhixiong ; Wei, Lin ; Li, Wenwen ; Dou, Yujiang ; Chen, Zhonglan ; Zhang, Che ; Xia, Yu ; Wang, Jing ; Zhang, Mengling ; Yang, Kai ; Ma, Yuqiang ; Kang, Zhenhui</creator><creatorcontrib>Yuan, Bing ; Liu, Jiaojiao ; Deng, Zhixiong ; Wei, Lin ; Li, Wenwen ; Dou, Yujiang ; Chen, Zhonglan ; Zhang, Che ; Xia, Yu ; Wang, Jing ; Zhang, Mengling ; Yang, Kai ; Ma, Yuqiang ; Kang, Zhenhui</creatorcontrib><description>Addressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectures based on melittin (Mel), a natural antimicrobial peptide, and poly(ethylene glycol) (PEG), a clinically available agent, as building blocks that show potent and architecture-modulated antibacterial activity. Among the complexes, the flexibly linear complex consisting of one Mel terminally connected with a long-chained PEG (e.g., PEG 12k –1*Mel) shows the most pronounced improvement in performance compared with pristine Mel, with up to 500% improvement in antimicrobial efficiency, excellent in vitro activity against multidrug-resistant pathogens (over a range of minimal inhibitory concentrations of 2–32 µg mL −1 ), a 68% decrease in in vitro cytotoxicity, and a 57% decrease in in vivo acute toxicity. A lipid-specific mode of action in membrane recognition and an accelerated “channel” effect in perforating the bacterial membrane of the complex are described. Our results introduce a new way to design highly efficient and low-toxicity antimicrobial drugs based on architectural modulations with clinically available agents. Integration and design of existing function units into specialized architectures might show combined and even improved performances of the original components. Here we describe a serial of synthetic antibacterial complexes composed of melittin, a natural antimicrobial peptide, and poly(ethylene glycol), a clinical available agent, as building blocks, which show potent and architecture-modulated antibacterial activity against multidrug-resistant pathogens and decreased cytotoxicity.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00287-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/57 ; 639/638/440 ; Antibiotics ; Antimicrobial agents ; Architecture ; Biocompatibility ; Biomaterials ; Chemistry and Materials Science ; Cytotoxicity ; Drug resistance ; Energy Systems ; Lipids ; Materials Science ; Membranes ; Multidrug resistant organisms ; Optical and Electronic Materials ; Pathogens ; Peptides ; Perforating ; Polyethylene glycol ; Structural Materials ; Surface and Interface Science ; Thin Films ; Toxicity</subject><ispartof>NPG Asia materials, 2021, Vol.13 (1), Article 18</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c0dac3c826e362ac639c99f59d962a1fd74c5201839eaade401c211cac9ce3c73</citedby><cites>FETCH-LOGICAL-c400t-c0dac3c826e362ac639c99f59d962a1fd74c5201839eaade401c211cac9ce3c73</cites><orcidid>0000-0002-2472-5984 ; 0000-0002-5433-3199 ; 0000-0001-6989-5840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00287-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00287-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Yuan, Bing</creatorcontrib><creatorcontrib>Liu, Jiaojiao</creatorcontrib><creatorcontrib>Deng, Zhixiong</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Dou, Yujiang</creatorcontrib><creatorcontrib>Chen, Zhonglan</creatorcontrib><creatorcontrib>Zhang, Che</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Mengling</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Ma, Yuqiang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><title>A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Addressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectures based on melittin (Mel), a natural antimicrobial peptide, and poly(ethylene glycol) (PEG), a clinically available agent, as building blocks that show potent and architecture-modulated antibacterial activity. Among the complexes, the flexibly linear complex consisting of one Mel terminally connected with a long-chained PEG (e.g., PEG 12k –1*Mel) shows the most pronounced improvement in performance compared with pristine Mel, with up to 500% improvement in antimicrobial efficiency, excellent in vitro activity against multidrug-resistant pathogens (over a range of minimal inhibitory concentrations of 2–32 µg mL −1 ), a 68% decrease in in vitro cytotoxicity, and a 57% decrease in in vivo acute toxicity. A lipid-specific mode of action in membrane recognition and an accelerated “channel” effect in perforating the bacterial membrane of the complex are described. Our results introduce a new way to design highly efficient and low-toxicity antimicrobial drugs based on architectural modulations with clinically available agents. Integration and design of existing function units into specialized architectures might show combined and even improved performances of the original components. Here we describe a serial of synthetic antibacterial complexes composed of melittin, a natural antimicrobial peptide, and poly(ethylene glycol), a clinical available agent, as building blocks, which show potent and architecture-modulated antibacterial activity against multidrug-resistant pathogens and decreased cytotoxicity.</description><subject>119/118</subject><subject>631/57</subject><subject>639/638/440</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Architecture</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cytotoxicity</subject><subject>Drug resistance</subject><subject>Energy Systems</subject><subject>Lipids</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Multidrug resistant organisms</subject><subject>Optical and Electronic Materials</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Perforating</subject><subject>Polyethylene glycol</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><subject>Toxicity</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kElLBDEQhYMoOOj8AU8Bz63ZeslxGNxgwIueQ1md7snQm0la6H9vdERvnqoKvveq6hFyxdkNZ7K6DYorUWZM8IwxUZXZckJWvKpUplhenv72Sp-TdQgHxhgvClXlakX8hvZjZ3HuwFPwuHfRYpw9dLS2wbUDjXuIdPJj74INdBqjHSKFIbreoR_fXCIBo_twcaHQghtCpP3cRVf7uc18Mgkx4XSCuB9bO4RLctZAF-z6p16Q1_u7l-1jtnt-eNpudhkqxmKGrAaUWInCykIAFlKj1k2ua51G3tSlwlwwXkltAWqrGEfBOQJqtBJLeUGuj77p-PfZhmgO4-yHtNIIpYtSci5EosSRSs-E4G1jJu968IvhzHzFa47xmhSv-Y7XLEkkj6KQ4KG1_s_6H9Un81aBcw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Bing</creator><creator>Liu, Jiaojiao</creator><creator>Deng, Zhixiong</creator><creator>Wei, Lin</creator><creator>Li, Wenwen</creator><creator>Dou, Yujiang</creator><creator>Chen, Zhonglan</creator><creator>Zhang, Che</creator><creator>Xia, Yu</creator><creator>Wang, Jing</creator><creator>Zhang, Mengling</creator><creator>Yang, Kai</creator><creator>Ma, Yuqiang</creator><creator>Kang, Zhenhui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2472-5984</orcidid><orcidid>https://orcid.org/0000-0002-5433-3199</orcidid><orcidid>https://orcid.org/0000-0001-6989-5840</orcidid></search><sort><creationdate>2021</creationdate><title>A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens</title><author>Yuan, Bing ; Liu, Jiaojiao ; Deng, Zhixiong ; Wei, Lin ; Li, Wenwen ; Dou, Yujiang ; Chen, Zhonglan ; Zhang, Che ; Xia, Yu ; Wang, Jing ; Zhang, Mengling ; Yang, Kai ; Ma, Yuqiang ; Kang, Zhenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c0dac3c826e362ac639c99f59d962a1fd74c5201839eaade401c211cac9ce3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>631/57</topic><topic>639/638/440</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Architecture</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cytotoxicity</topic><topic>Drug resistance</topic><topic>Energy Systems</topic><topic>Lipids</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Multidrug resistant organisms</topic><topic>Optical and Electronic Materials</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Perforating</topic><topic>Polyethylene glycol</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Bing</creatorcontrib><creatorcontrib>Liu, Jiaojiao</creatorcontrib><creatorcontrib>Deng, Zhixiong</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Dou, Yujiang</creatorcontrib><creatorcontrib>Chen, Zhonglan</creatorcontrib><creatorcontrib>Zhang, Che</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Mengling</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Ma, Yuqiang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Bing</au><au>Liu, Jiaojiao</au><au>Deng, Zhixiong</au><au>Wei, Lin</au><au>Li, Wenwen</au><au>Dou, Yujiang</au><au>Chen, Zhonglan</au><au>Zhang, Che</au><au>Xia, Yu</au><au>Wang, Jing</au><au>Zhang, Mengling</au><au>Yang, Kai</au><au>Ma, Yuqiang</au><au>Kang, Zhenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>18</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Addressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectures based on melittin (Mel), a natural antimicrobial peptide, and poly(ethylene glycol) (PEG), a clinically available agent, as building blocks that show potent and architecture-modulated antibacterial activity. Among the complexes, the flexibly linear complex consisting of one Mel terminally connected with a long-chained PEG (e.g., PEG 12k –1*Mel) shows the most pronounced improvement in performance compared with pristine Mel, with up to 500% improvement in antimicrobial efficiency, excellent in vitro activity against multidrug-resistant pathogens (over a range of minimal inhibitory concentrations of 2–32 µg mL −1 ), a 68% decrease in in vitro cytotoxicity, and a 57% decrease in in vivo acute toxicity. A lipid-specific mode of action in membrane recognition and an accelerated “channel” effect in perforating the bacterial membrane of the complex are described. Our results introduce a new way to design highly efficient and low-toxicity antimicrobial drugs based on architectural modulations with clinically available agents. Integration and design of existing function units into specialized architectures might show combined and even improved performances of the original components. Here we describe a serial of synthetic antibacterial complexes composed of melittin, a natural antimicrobial peptide, and poly(ethylene glycol), a clinical available agent, as building blocks, which show potent and architecture-modulated antibacterial activity against multidrug-resistant pathogens and decreased cytotoxicity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00287-y</doi><orcidid>https://orcid.org/0000-0002-2472-5984</orcidid><orcidid>https://orcid.org/0000-0002-5433-3199</orcidid><orcidid>https://orcid.org/0000-0001-6989-5840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021, Vol.13 (1), Article 18
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2496731122
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects 119/118
631/57
639/638/440
Antibiotics
Antimicrobial agents
Architecture
Biocompatibility
Biomaterials
Chemistry and Materials Science
Cytotoxicity
Drug resistance
Energy Systems
Lipids
Materials Science
Membranes
Multidrug resistant organisms
Optical and Electronic Materials
Pathogens
Peptides
Perforating
Polyethylene glycol
Structural Materials
Surface and Interface Science
Thin Films
Toxicity
title A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20architectural%20design%20that%20promises%20potent%20antimicrobial%20activity%20against%20multidrug-resistant%20pathogens&rft.jtitle=NPG%20Asia%20materials&rft.au=Yuan,%20Bing&rft.date=2021&rft.volume=13&rft.issue=1&rft.artnum=18&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00287-y&rft_dat=%3Cproquest_cross%3E2496731122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496731122&rft_id=info:pmid/&rfr_iscdi=true