Perfect fluid spacetimes and Yamabe solitons
This paper deals with the study of perfect fluid spacetimes. It is proven that a perfect fluid spacetime is Ricci recurrent if and only if the velocity vector field of perfect fluid spacetime is parallel and α = β. In addition, in a stiff matter perfect fluid Yang pure space with p + σ ≠ 0, the inte...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-03, Vol.62 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the study of perfect fluid spacetimes. It is proven that a perfect fluid spacetime is Ricci recurrent if and only if the velocity vector field of perfect fluid spacetime is parallel and α = β. In addition, in a stiff matter perfect fluid Yang pure space with p + σ ≠ 0, the integral curves generated by the velocity vector field are geodesics. Moreover, it is shown that in a generalized Robertson–Walker perfect fluid spacetime, the Weyl tensor is divergence-free and the gradient of the potential function of the concircular vector field is pointwise collinear with the velocity vector field of perfect fluid spacetime. We also characterize the perfect fluid spacetimes whose Lorentzian metrics are Yamabe and gradient Yamabe solitons, respectively. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0033967 |