Index theorem on T2/ZN orbifolds

We investigate chiral zero modes and winding numbers at fixed points on T2/ZN orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula n+−n−=(−V++V−)/2N, where n± are the numbers of the ± chiral zero modes and V± are the sums of the winding numbers at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-01, Vol.103 (2), p.1
Hauptverfasser: Sakamoto, Makoto, Takeuchi, Maki, Tatsuta, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate chiral zero modes and winding numbers at fixed points on T2/ZN orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula n+−n−=(−V++V−)/2N, where n± are the numbers of the ± chiral zero modes and V± are the sums of the winding numbers at the fixed points on T2/ZN. This formula is complementary to our zero-mode counting formula on the magnetized orbifolds with nonzero flux background M≠0, consistently with substituting M=0 for the counting formula n+−n−=(2M−V++V−)/2N.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.025009