Index theorem on T2/ZN orbifolds
We investigate chiral zero modes and winding numbers at fixed points on T2/ZN orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula n+−n−=(−V++V−)/2N, where n± are the numbers of the ± chiral zero modes and V± are the sums of the winding numbers at...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-01, Vol.103 (2), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate chiral zero modes and winding numbers at fixed points on T2/ZN orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula n+−n−=(−V++V−)/2N, where n± are the numbers of the ± chiral zero modes and V± are the sums of the winding numbers at the fixed points on T2/ZN. This formula is complementary to our zero-mode counting formula on the magnetized orbifolds with nonzero flux background M≠0, consistently with substituting M=0 for the counting formula n+−n−=(2M−V++V−)/2N. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.103.025009 |