Kink moduli spaces: Collective coordinates reconsidered

Moduli spaces-finite-dimensional, collective coordinate manifolds-for kinks and antikinks in ϕ4 theory and sine-Gordon theory are reconsidered. The field theory Lagrangian restricted to moduli space defines a reduced Lagrangian, combining a potential with a kinetic term that can be interpreted as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-01, Vol.103 (2), p.1, Article 025024
Hauptverfasser: Manton, N. S., Oleś, K., Romańczukiewicz, T., Wereszczyński, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Moduli spaces-finite-dimensional, collective coordinate manifolds-for kinks and antikinks in ϕ4 theory and sine-Gordon theory are reconsidered. The field theory Lagrangian restricted to moduli space defines a reduced Lagrangian, combining a potential with a kinetic term that can be interpreted as a Riemannian metric on moduli space. Moduli spaces should be metrically complete, or have an infinite potential on their boundary. Examples are constructed for both kink-antikink and kink-antikink-kink configurations. The naive position coordinates of the kinks and antikinks sometimes need to be extended from real to imaginary values, although the field remains real. The previously discussed null-vector problem for the shape modes of ϕ4 kinks is resolved by a better coordinate choice. In sine-Gordon theory, moduli spaces can be constructed using exact solutions at the critical energy separating scattering and breather (or wobble) solutions; here, energy conservation relates the metric and potential. The reduced dynamics on these moduli spaces accurately reproduces properties of the exact solutions over a range of energies.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.025024