Non-aggregated Pd nanoparticles deposited onto catalytic supports

Nanostructured powders have shown great promise for a variety of applications including chemical gas sensors, high surface area supports for catalysis, tribology, chemical mechanical polishing, and optoelectronics. In this report, highly dispersed Pd nanoparticles with a narrow size distribution, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2006-03, Vol.82 (4), p.675-678
Hauptverfasser: ALLMOND, C. E, OLESHKO, V. P, HOWE, J. M, FITZ-GERALD, J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructured powders have shown great promise for a variety of applications including chemical gas sensors, high surface area supports for catalysis, tribology, chemical mechanical polishing, and optoelectronics. In this report, highly dispersed Pd nanoparticles with a narrow size distribution, and mean diameter of 2±0.2 nm, were deposited at room temperature onto amorphous carbon and oxide supports (TiO2, Al2O3) by pulsed-laser ablation of a Pd sputtering target. Depositions were performed in Ar at a back-fill pressure of 3 mTorr after reaching a base pressure of 10-7 Torr. Populations of uniformly dispersed particles with an interparticle spacing of 3 to 10 nm were observed by high-resolution transmission electron microscopy with little evidence of nanoparticle aggregation. The chemical compositions of individual nanoparticles were confirmed by high spatial resolution energy-dispersive X-ray spectroscopy.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-005-3407-x