Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling

Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1434-15, Article 1434
Hauptverfasser: Vergara, Ismael A., Mintoff, Christopher P., Sandhu, Shahneen, McIntosh, Lachlan, Young, Richard J., Wong, Stephen Q., Colebatch, Andrew, Cameron, Daniel L., Kwon, Julia Lai, Wolfe, Rory, Peng, Angela, Ellul, Jason, Dou, Xuelin, Fedele, Clare, Boyle, Samantha, Arnau, Gisela Mir, Raleigh, Jeanette, Hatzimihalis, Athena, Szeto, Pacman, Mooi, Jennifer, Widmer, Daniel S., Cheng, Phil F., Amann, Valerie, Dummer, Reinhard, Hayward, Nicholas, Wilmott, James, Scolyer, Richard A., Cho, Raymond J., Bowtell, David, Thorne, Heather, Alsop, Kathryn, Cordner, Stephen, Woodford, Noel, Leditschke, Jodie, O’Brien, Patricia, Dawson, Sarah-Jane, McArthur, Grant A., Mann, Graham J., Levesque, Mitchell P., Papenfuss, Anthony T., Shackleton, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression. The genetic changes that occur in late stage metastatic melanoma are not well delineated. Here, the authors use rapid autopsy samples from metastatic melanoma patients and show that the late stage in the disease is characterised by whole genome doubling and aneuploidy.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21576-8