Heat kernel asymptotics for quaternionic contact manifolds

In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients \(c_0\) and \(c_1\) appearing in the small time asymptotics expansion of the he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
1. Verfasser: Laaroussi, Abdellah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients \(c_0\) and \(c_1\) appearing in the small time asymptotics expansion of the heat kernel on the diagonal. We show that the second coefficient \(c_1\) depends linearly on the qc scalar curvature \(\kappa\). Finally we apply our results to compact qc-Einstein manifolds and prove the spectral invariance of geometric quantities in the subriemannian setting.
ISSN:2331-8422