Heat kernel asymptotics for quaternionic contact manifolds
In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients \(c_0\) and \(c_1\) appearing in the small time asymptotics expansion of the he...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients \(c_0\) and \(c_1\) appearing in the small time asymptotics expansion of the heat kernel on the diagonal. We show that the second coefficient \(c_1\) depends linearly on the qc scalar curvature \(\kappa\). Finally we apply our results to compact qc-Einstein manifolds and prove the spectral invariance of geometric quantities in the subriemannian setting. |
---|---|
ISSN: | 2331-8422 |