Estimating fatigue behavior of a family of aluminum overhead conductors using ANNs
This study aimed to create an artificial neural network (ANN) architecture capable of estimating the fatigue behavior of aluminum overhead conductors, considering specific weight (W) and bending stiffness (EI) as parameters of influence. ANN training and testing is conducted by using a dataset obtai...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2021-04, Vol.44 (4), p.983-996 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to create an artificial neural network (ANN) architecture capable of estimating the fatigue behavior of aluminum overhead conductors, considering specific weight (W) and bending stiffness (EI) as parameters of influence. ANN training and testing is conducted by using a dataset obtained from fatigue tests carried out in a 50 m resonant bench at the University of Brasilia (UnB). ANNs are used to construct constant life diagrams for this family of conductors, and to compare the results obtained experimentally. Our findings show that for the architectures analyzed, it is possible to accurately estimate the fatigue behavior of this family of aluminum conductors. |
---|---|
ISSN: | 8756-758X 1460-2695 |
DOI: | 10.1111/ffe.13408 |