N(K)-PARACOMPACT THREE METRIC AS A ETA-RICCI SOLITON

In this paper, we study Eta-Ricci soliton (n-Ricci soliton) on three di- mensional N(k)-paracontact metric manifolds. We prove that the scalar curvature of an N(k)-paracontact metric manifold admitting n-Ricci solitons is constant and the manifold is of constant curvature k. Also, we prove that such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics Mathematics, informatics, physics, 2020-07, Vol.13 (2), p.581-594
Hauptverfasser: Kar, Debabrata, Majhi, Pradip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study Eta-Ricci soliton (n-Ricci soliton) on three di- mensional N(k)-paracontact metric manifolds. We prove that the scalar curvature of an N(k)-paracontact metric manifold admitting n-Ricci solitons is constant and the manifold is of constant curvature k. Also, we prove that such manifolds are Einstein. Moreover, we show the condition of that the n-Ricci soliton to be expanding, steady or shrinking. In such a case we prove that the potential vector field is Killing vector field. Also, we show that the potential vector field is an infinitesimal automorphism or it leaves the structure tensor in the direction perpendicular to the Reeb vector field. Finally, we illustrate an example of a three dimensional N(k)-paracontact metric manifold admitting an n-Ricci soliton.
ISSN:2065-2151
DOI:10.31926/but.mif.2020.13.62.2.16