Selective Inference for High-order Interaction Features Selected in a Stepwise Manner

In this paper, we study a stepwise feature selection algorithm for a high-order interaction model and we propose a new statistical inference for selected high-order interaction features. Feature selection and statistical inference for high-order interaction features are challenging tasks because the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IPSJ Transactions on Bioinformatics 2021, Vol.14, pp.1-11
Hauptverfasser: Suzumura, Shinya, Nakagawa, Kazuya, Umezu, Yuta, Tsuda, Koji, Takeuchi, Ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a stepwise feature selection algorithm for a high-order interaction model and we propose a new statistical inference for selected high-order interaction features. Feature selection and statistical inference for high-order interaction features are challenging tasks because the possible number of those interactions is extremely large. Our main contribution is to extend recently developed selective inference framework to high-order interaction model by developing a pruning technique for searching over tree which represents high-order interaction features. We demonstrate the effectiveness of the proposed approach by applying it to several synthetic problems and an HIV drug resistance prediction problem.
ISSN:1882-6679
1882-6679
DOI:10.2197/ipsjtbio.14.1