Selective Inference for High-order Interaction Features Selected in a Stepwise Manner
In this paper, we study a stepwise feature selection algorithm for a high-order interaction model and we propose a new statistical inference for selected high-order interaction features. Feature selection and statistical inference for high-order interaction features are challenging tasks because the...
Gespeichert in:
Veröffentlicht in: | IPSJ Transactions on Bioinformatics 2021, Vol.14, pp.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a stepwise feature selection algorithm for a high-order interaction model and we propose a new statistical inference for selected high-order interaction features. Feature selection and statistical inference for high-order interaction features are challenging tasks because the possible number of those interactions is extremely large. Our main contribution is to extend recently developed selective inference framework to high-order interaction model by developing a pruning technique for searching over tree which represents high-order interaction features. We demonstrate the effectiveness of the proposed approach by applying it to several synthetic problems and an HIV drug resistance prediction problem. |
---|---|
ISSN: | 1882-6679 1882-6679 |
DOI: | 10.2197/ipsjtbio.14.1 |