Development of a Generating Method for Energy Saving Running Profile Considering Energy Consumption and Running Time on Next Section

There is growing demand for energy saving to prevent global warming. Thus, the railway industry is focusing on energy saving. Power consumption by running trains has a large variation of about 20% caused by drivers' operation. Therefore, improving the running profile will considerably reduce en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. D, Sangyō ōyō bumonshi 2021/03/01, Vol.141(3), pp.276-282
Hauptverfasser: Tsutsumi, Yuhi, Oda, Atsushi, Tsuji, Masaki
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is growing demand for energy saving to prevent global warming. Thus, the railway industry is focusing on energy saving. Power consumption by running trains has a large variation of about 20% caused by drivers' operation. Therefore, improving the running profile will considerably reduce energy consumption. Some algorithms for generating energy saving running profile have been researched and developed. To extend the applicability of energy saving running profile to various railway, we have developed an algorithm for generating energy saving running profile which fulfills target passing time on line which has passing stations between departure and arrival station like limited express train, in addition to between only adjacent stations like local line. Conventional algorithms do not optimize the passing speed because it generates running profile without consideration after the passing station. As a result, there is inefficient acceleration on the next section, and the energy saving performance is degraded. To solve this issue, we propose an evaluation function that adds energy consumption and running time on the next section when generating an energy saving running profile. The proposed method was evaluated by a running simulation, and the results show that the energy saving is improved by at most 4.7%, compared with the conventional method.
ISSN:0913-6339
2187-1094
1348-8163
2187-1108
DOI:10.1541/ieejias.141.276