Thermal analysis of Casson micropolar nanofluid flow over a permeable curved stretching surface under the stagnation region

We consider a curved surface upon which the Casson micropolar nanofluid flow is discharged to understand the behavior of such flow and heat progression. The non-Newtonian fluid flow is controlled with the introduction of a magnetic force which is directed against the flow to alter the moment of flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-02, Vol.143 (3), p.2485-2497
Hauptverfasser: Amjad, Mohammad, Zehra, Iffat, Nadeem, S., Abbas, Nadeem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a curved surface upon which the Casson micropolar nanofluid flow is discharged to understand the behavior of such flow and heat progression. The non-Newtonian fluid flow is controlled with the introduction of a magnetic force which is directed against the flow to alter the moment of flow. An increase in the numerical value of modified Hartmann number slows down the flow by adding discharge against the flow. Lorentz force produced by increasing the curve of the channel suppresses the flow velocity. The micropolar parameter reduces the drag and helps in increasing the fluid flow. Mathematical modeling of the problem is done by taking into account the conventional assumptions taken in fluid flow theories. The modeled equations are simplified by considering similar transformation variables used in the contemporary literature. Numerical result is obtained by using bvp4c solver used in MATLAB by allowing the acceptable tolerance level at 1e−4. Various tests are carried out to choose the best match of the parametric values which help in achieving the defined boundary conditions. The output of the various solutions is plotted under varying values of different parameters, and henceforth the changes occurred are noted and discussed. The behavior of velocity, microrotational, temperature and concentration profiles is observed by comparing the graphical and tabular values. The role of different physical quantities under different parametric assumptions for stretching/shrinking channel is also taken into account and highlighted.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-020-10127-w