Wideband performance limitations of the C-FDTD in the discretization impoverishment of a curved surface

Purpose This paper aims to explore the limitations of the conformal finite difference time-domain method (C-FDTD or Dey–Mittra) when modeling perfect electric conducting (PEC) and lossless dielectric curved surfaces in coarse meshes. The C-FDTD is a widely known approach to reduce error of curved su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2020-12, Vol.39 (5), p.1005-1015
Hauptverfasser: Fortes, Lucas Lobo Latorre, Gonçalves, Sandro Trindade Mordente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to explore the limitations of the conformal finite difference time-domain method (C-FDTD or Dey–Mittra) when modeling perfect electric conducting (PEC) and lossless dielectric curved surfaces in coarse meshes. The C-FDTD is a widely known approach to reduce error of curved surfaces in the FDTD method. However, its performance limitations are not broadly described in the literature, which are explored as a novelty in this paper. Design/methodology/approach This paper explores the C-FDTD method applied on field scattering simulations of two curved surfaces, a dielectric and a PEC sphere, through the frequency range from 0.8 to 10 GHz. For each sphere, the mesh was progressively impoverished to evaluate the accuracy drop and performance limitations of the C-FDTD with the mesh impoverishment, along with the wideband frequency range described. Findings This paper shows and quantifies the C-FDTD method’s accuracy drops as the mesh is impoverished, reducing C-FDTD’s performance. It is also shown how the performance drops differently according to the frequency of interest. Practical implications With this study, coarse meshes, with smaller execution time and reduced memory usage, can be further explored reliably accounting the desired accuracy, enabling a better trade-off between accuracy and computational effort. Originality/value This paper quantifies the limitations of the C-FDTD in coarse meshes in a wideband manner, which brings a broader and newer insight upon C-FDTD’s limitations in coarse meshes or relatively small objects in electromagnetic simulation.
ISSN:0332-1649
2054-5606
DOI:10.1108/COMPEL-01-2020-0048