Fault-Tolerant Track Control of Hypersonic Vehicle Based on Fast Terminal Sliding Mode
In this paper, the track control problem of hypersonic a vehicle with modeling uncertainties, external disturbance, and multifault is studied and analyzed. First, a fault model of a second-order system including disturbance is established by introducing auxiliary error variables on the basis of feed...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2017-11, Vol.54 (6), p.1304-1316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the track control problem of hypersonic a vehicle with modeling uncertainties, external disturbance, and multifault is studied and analyzed. First, a fault model of a second-order system including disturbance is established by introducing auxiliary error variables on the basis of feedback linearization for a longitudinal model of the hypersonic vehicle. Second, for a fault-free actuator and system model with unknown upper bound disturbance, a fast adaptive terminal sliding mode controller is designed, which ensures the sliding mode manifold is finite-time stable. To solve the multifault problem of actuator, based on the passive fault-tolerant control method, a fast adaptive terminal sliding mode fault-tolerant controller is designed, which guarantees that the system state is finite-time stabile in the event of actuator failure. The controller adopts two adaptive algorithms to estimate the unknown fault information and system disturbance information. Finally, a rigorous proof using Lyapunov theory is given for the stability of the designed controllers. Numerical simulation is run for the longitudinal nonlinear dynamic model of a hypersonic vehicle and simulation results prove the effectiveness of the two designed controllers. |
---|---|
ISSN: | 0022-4650 1533-6794 |
DOI: | 10.2514/1.A33890 |