Fault-Tolerant Track Control of Hypersonic Vehicle Based on Fast Terminal Sliding Mode

In this paper, the track control problem of hypersonic a vehicle with modeling uncertainties, external disturbance, and multifault is studied and analyzed. First, a fault model of a second-order system including disturbance is established by introducing auxiliary error variables on the basis of feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2017-11, Vol.54 (6), p.1304-1316
Hauptverfasser: Sun, Jing-Guang, Song, Shen-Min, Wu, Guan-Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the track control problem of hypersonic a vehicle with modeling uncertainties, external disturbance, and multifault is studied and analyzed. First, a fault model of a second-order system including disturbance is established by introducing auxiliary error variables on the basis of feedback linearization for a longitudinal model of the hypersonic vehicle. Second, for a fault-free actuator and system model with unknown upper bound disturbance, a fast adaptive terminal sliding mode controller is designed, which ensures the sliding mode manifold is finite-time stable. To solve the multifault problem of actuator, based on the passive fault-tolerant control method, a fast adaptive terminal sliding mode fault-tolerant controller is designed, which guarantees that the system state is finite-time stabile in the event of actuator failure. The controller adopts two adaptive algorithms to estimate the unknown fault information and system disturbance information. Finally, a rigorous proof using Lyapunov theory is given for the stability of the designed controllers. Numerical simulation is run for the longitudinal nonlinear dynamic model of a hypersonic vehicle and simulation results prove the effectiveness of the two designed controllers.
ISSN:0022-4650
1533-6794
DOI:10.2514/1.A33890