Adaptive Control of Precision Guided Airdrop Systems with Highly Uncertain Dynamics

The bulk of research in the field of precision guided airdrop systems has focused on improving landing accuracy in the presence of atmospheric winds that can exceed vehicle airspeed. One important challenge of parafoil systems is their highly uncertain flight dynamic behavior and control response, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2018-05, Vol.41 (5), p.1025-1035
Hauptverfasser: Cacan, Martin R, Costello, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bulk of research in the field of precision guided airdrop systems has focused on improving landing accuracy in the presence of atmospheric winds that can exceed vehicle airspeed. One important challenge of parafoil systems is their highly uncertain flight dynamic behavior and control response, which can result from canopy degradation or an offnominal inflation event. This significantly impacts the ability to reach the target and can often lead to very large miss distances. This work addresses guided airdrop system model uncertainty with a novel combined direct and indirect adaptive control strategy to quickly characterize vehicle dynamics and lateral control sensitivity in flight. Extensive simulation and experimental flight testing indicate that the proposed adaptive algorithm is capable of high-accuracy landing in a large variety of degraded conditions, including unknown nonlinear changes in control sensitivity as well as control reversals. In comparison, current industry standard algorithms experience over an order of magnitude decrease in accuracy when tested under identical scenarios. Presented as Paper 2017-3722 at the Aerodynamic Decelerator Conference, Denver, CO, 5-9 June 2017
ISSN:0731-5090
1533-3884
DOI:10.2514/1.G003039