Approximate Estimators for Linear Systems with Additive Cauchy Noises

The recently published optimal Cauchy estimator poses practical implementation challenges due to its time-growing complexity. Alternatively, addressing impulsive measurement and process noises, while using common estimation approaches, requires heuristic schemes. Approximate methods, such as particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2017-11, Vol.40 (11), p.2820-2827
Hauptverfasser: Fonod, Robert, Idan, Moshe, Speyer, Jason L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recently published optimal Cauchy estimator poses practical implementation challenges due to its time-growing complexity. Alternatively, addressing impulsive measurement and process noises, while using common estimation approaches, requires heuristic schemes. Approximate methods, such as particle and Gaussian-sum filters, were suggested to tackle the estimation problem in a heavy-tailed-noise environment when constraining the computational load. In this paper, the performances of a particle filter and a Gaussian-sum filter, designed for a linear system with specified Cauchy-noise parameters, are compared numerically to a Cauchy filter-based approximation showing the advantages of the latter.
ISSN:0731-5090
1533-3884
DOI:10.2514/1.G002775