Linear Minimum Variance Filters for Measurement Bias Characterization

FOR linear estimation problems, the minimum variance (or Kalman) filter provides unbiased state estimates when sensor measurements contain only zero-mean, random Gaussian errors. When the measurement error statistics are accurately characterized, the Kalman filter covariance matrix is usually consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2013-01, Vol.36 (1), p.337-342
1. Verfasser: Hough, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FOR linear estimation problems, the minimum variance (or Kalman) filter provides unbiased state estimates when sensor measurements contain only zero-mean, random Gaussian errors. When the measurement error statistics are accurately characterized, the Kalman filter covariance matrix is usually consistent with the error statistics of the bias-free estimates. In many real world applications, sensor measurements contain unmodeled static and dynamic measurement biases, or low-frequency systematic errors. Measurement biases cause biases in the Kalman state estimates. The Kalman filter usually under-estimates the error statistics of the biased state estimates, meaning that the filter covariances are smaller than they should be, because the measurement biases are not characterized.
ISSN:0731-5090
1533-3884
DOI:10.2514/1.58968