Linear Minimum Variance Filters for Measurement Bias Characterization
FOR linear estimation problems, the minimum variance (or Kalman) filter provides unbiased state estimates when sensor measurements contain only zero-mean, random Gaussian errors. When the measurement error statistics are accurately characterized, the Kalman filter covariance matrix is usually consis...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2013-01, Vol.36 (1), p.337-342 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | FOR linear estimation problems, the minimum variance (or Kalman) filter provides unbiased state estimates when sensor measurements contain only zero-mean, random Gaussian errors. When the measurement error statistics are accurately characterized, the Kalman filter covariance matrix is usually consistent with the error statistics of the bias-free estimates. In many real world applications, sensor measurements contain unmodeled static and dynamic measurement biases, or low-frequency systematic errors. Measurement biases cause biases in the Kalman state estimates. The Kalman filter usually under-estimates the error statistics of the biased state estimates, meaning that the filter covariances are smaller than they should be, because the measurement biases are not characterized. |
---|---|
ISSN: | 0731-5090 1533-3884 |
DOI: | 10.2514/1.58968 |