Magnetic-buoyancy-induced mixing in AGB stars: a theoretical explanation of the non-universal relation of [Y/Mg] to age

Context. Abundance ratios involving Y or other slow-neutron capture elements are routinely used to infer stellar ages. Aims. We aim to explain the observed [Y/H] and [Y/Mg] abundance ratios of star clusters located in the inner disc with a new prescription for mixing in asymptotic giant branch (AGB)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-02, Vol.646, p.L2
Hauptverfasser: Magrini, L., Vescovi, D., Casali, G., Cristallo, S., Viscasillas Vázquez, C., Cescutti, G., Spina, L., Van Der Swaelmen, M., Randich, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. Abundance ratios involving Y or other slow-neutron capture elements are routinely used to infer stellar ages. Aims. We aim to explain the observed [Y/H] and [Y/Mg] abundance ratios of star clusters located in the inner disc with a new prescription for mixing in asymptotic giant branch (AGB) stars. Methods. In a Galactic chemical evolution model, we adopted a new set of AGB stellar yields in which magnetic mixing was included. We compared the results of the model with a sample of abundances and ages of open clusters located at different Galactocentric distances. Results. The magnetic mixing causes a less efficient production of Y at high metallicity. A non-negligible fraction of stars with super-solar metallicity is produced in the inner disc, and their Y abundances are affected by the reduced yields. The results of the new AGB model qualitatively reproduce the observed trends for both [Y/H] and [Y/Mg] versus age at different Galactocetric distances. Conclusions. Our results confirm from a theoretical point of view that the relation between [Y/Mg] and stellar age cannot be ‘universal’, that is, cannot be the same in every part of the Galaxy. It has a strong dependence on the star formation rate, on the s -process yields, and on their relation with metallicity, and it therefore varies throughout the Galactic disc.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202040115