Overcharge protection of lithium-ion batteries with phenothiazine redox shuttles

Overcharge in lithium-ion batteries (LIBs) can be mitigated using electron-donating small molecules with oxidation potentials just above the end-of-charge potential of the electrochemical cell. These additives function by oxidizing at the cathode/electrolyte interface, forming radical cations, and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2021-03, Vol.45 (8), p.375-3755
1. Verfasser: Odom, Susan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overcharge in lithium-ion batteries (LIBs) can be mitigated using electron-donating small molecules with oxidation potentials just above the end-of-charge potential of the electrochemical cell. These additives function by oxidizing at the cathode/electrolyte interface, forming radical cations, and are then reduced at the anode/electrolyte interface, becoming neutral again. A variety of redox shuttles have been reported since 2005 including derivatives of TEMPO, alkoxybenzene, and phenothiazine. This perspective focuses on phenothiazines redox shuttles and their performance in LIBs. Overcharge protection of Li-ion batteries with a variety of phenothiazine derivatives.
ISSN:1144-0546
1369-9261
DOI:10.1039/d0nj05935h