Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth
In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-02, Vol.2021, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Yu, Lina Ma, Yunfei Yang, Yuntong Zhang, Jingchao Wang, Chunwei |
description | In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results. |
doi_str_mv | 10.1155/2021/6614150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494042025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494042025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-742d987c9e35c85d9d21f0ea023e1f2f0fc0be937355f920ea4cb93dd7e60bbf3</originalsourceid><addsrcrecordid>eNp9kMtOAjEYhSdGExHd-QBNXOpI22kZZklQ0IR4AxN3k04voThMsRdxfAff2SKsXZ0_OV_On3xJco7gNUKU9jDEqNfvI4IoPEg6iPazlCKSH8YbYpIinL0dJyfOLWEkKRp0kp8XUwXnwVh_SZHO9UqCWdvwhTWN_mZemwYoY8HIhHUtBbiRNWtjPshgWR3Db4x9d2Cj_QLcaMdN43UTTHBgyL3-_FtwYBaqpeQeeAMYeA5M2Fhw8GTqtjErHZcm1mz84jQ5Uqx28myf3eR1fDsf3aXTx8n9aDhNOS6IT3OCRTHIeSEzygdUFAIjBSWDOJNIYQUVh5UssjyjVBU4NoRXRSZELvuwqlTWTS52u2trPoJ0vlyaYJv4ssSkIJBEkzRSVzuKW-OclapcW71iti0RLLfCy63wci884pc7fKEbwTb6f_oXQ1SC2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494042025</pqid></control><display><type>article</type><title>Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Yu, Lina ; Ma, Yunfei ; Yang, Yuntong ; Zhang, Jingchao ; Wang, Chunwei</creator><contributor>Ding, Sanbo ; Sanbo Ding</contributor><creatorcontrib>Yu, Lina ; Ma, Yunfei ; Yang, Yuntong ; Zhang, Jingchao ; Wang, Chunwei ; Ding, Sanbo ; Sanbo Ding</creatorcontrib><description>In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6614150</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Couplings ; Engineering ; Feedback control ; Functions (mathematics) ; Linear matrix inequalities ; Mathematical analysis ; Neural networks ; Polynomials ; Robustness ; Time synchronization ; Upper bounds</subject><ispartof>Mathematical problems in engineering, 2021-02, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Lina Yu et al.</rights><rights>Copyright © 2021 Lina Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-742d987c9e35c85d9d21f0ea023e1f2f0fc0be937355f920ea4cb93dd7e60bbf3</cites><orcidid>0000-0003-1902-1373 ; 0000-0002-2104-9925 ; 0000-0002-8757-5987 ; 0000-0003-3611-5443 ; 0000-0001-8093-9058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Ding, Sanbo</contributor><contributor>Sanbo Ding</contributor><creatorcontrib>Yu, Lina</creatorcontrib><creatorcontrib>Ma, Yunfei</creatorcontrib><creatorcontrib>Yang, Yuntong</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Wang, Chunwei</creatorcontrib><title>Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth</title><title>Mathematical problems in engineering</title><description>In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results.</description><subject>Couplings</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Functions (mathematics)</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Robustness</subject><subject>Time synchronization</subject><subject>Upper bounds</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOAjEYhSdGExHd-QBNXOpI22kZZklQ0IR4AxN3k04voThMsRdxfAff2SKsXZ0_OV_On3xJco7gNUKU9jDEqNfvI4IoPEg6iPazlCKSH8YbYpIinL0dJyfOLWEkKRp0kp8XUwXnwVh_SZHO9UqCWdvwhTWN_mZemwYoY8HIhHUtBbiRNWtjPshgWR3Db4x9d2Cj_QLcaMdN43UTTHBgyL3-_FtwYBaqpeQeeAMYeA5M2Fhw8GTqtjErHZcm1mz84jQ5Uqx28myf3eR1fDsf3aXTx8n9aDhNOS6IT3OCRTHIeSEzygdUFAIjBSWDOJNIYQUVh5UssjyjVBU4NoRXRSZELvuwqlTWTS52u2trPoJ0vlyaYJv4ssSkIJBEkzRSVzuKW-OclapcW71iti0RLLfCy63wci884pc7fKEbwTb6f_oXQ1SC2w</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Yu, Lina</creator><creator>Ma, Yunfei</creator><creator>Yang, Yuntong</creator><creator>Zhang, Jingchao</creator><creator>Wang, Chunwei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1902-1373</orcidid><orcidid>https://orcid.org/0000-0002-2104-9925</orcidid><orcidid>https://orcid.org/0000-0002-8757-5987</orcidid><orcidid>https://orcid.org/0000-0003-3611-5443</orcidid><orcidid>https://orcid.org/0000-0001-8093-9058</orcidid></search><sort><creationdate>20210217</creationdate><title>Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth</title><author>Yu, Lina ; Ma, Yunfei ; Yang, Yuntong ; Zhang, Jingchao ; Wang, Chunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-742d987c9e35c85d9d21f0ea023e1f2f0fc0be937355f920ea4cb93dd7e60bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Couplings</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Functions (mathematics)</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Robustness</topic><topic>Time synchronization</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lina</creatorcontrib><creatorcontrib>Ma, Yunfei</creatorcontrib><creatorcontrib>Yang, Yuntong</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Wang, Chunwei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lina</au><au>Ma, Yunfei</au><au>Yang, Yuntong</au><au>Zhang, Jingchao</au><au>Wang, Chunwei</au><au>Ding, Sanbo</au><au>Sanbo Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-02-17</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6614150</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1902-1373</orcidid><orcidid>https://orcid.org/0000-0002-2104-9925</orcidid><orcidid>https://orcid.org/0000-0002-8757-5987</orcidid><orcidid>https://orcid.org/0000-0003-3611-5443</orcidid><orcidid>https://orcid.org/0000-0001-8093-9058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-02, Vol.2021, p.1-13 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2494042025 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Couplings Engineering Feedback control Functions (mathematics) Linear matrix inequalities Mathematical analysis Neural networks Polynomials Robustness Time synchronization Upper bounds |
title | Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Fixed-Time%20Synchronization%20for%20Coupled%20Delayed%20Neural%20Networks%20with%20Discontinuous%20Activations%20Subject%20to%20a%20Quadratic%20Polynomial%20Growth&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yu,%20Lina&rft.date=2021-02-17&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6614150&rft_dat=%3Cproquest_cross%3E2494042025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494042025&rft_id=info:pmid/&rfr_iscdi=true |