Robust Fixed-Time Synchronization for Coupled Delayed Neural Networks with Discontinuous Activations Subject to a Quadratic Polynomial Growth
In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-02, Vol.2021, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/6614150 |