Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method
In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Proceedings of the National Academy of Sciences, India, Section A, physical sciences |
container_volume | 91 |
creator | Kumar, Manoj Varshney, Parul |
description | In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method. |
doi_str_mv | 10.1007/s40010-019-00655-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493974966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493974966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4CrgejQ_M5lmKaX-QKuFWrchk9ypKdNJTWYW3fkOvqFPYnQEd97Nhcv5zuEehC4ouaKElNcxJ4SSjFCZESKKIjscoRFjBcloKdgxGhEuZDZhhJ-icYxbkqYoJRP5CG0e-x0EZ3SDV27XN7pzvsW-xi-6xRYCXvoGz9764b6Ort3gRd90bt8AXiUMIl5462oHFs9da2MHtvt8_1h61xodAC-ge_X2HJ3Uuokw_t1naH07e57eZ_Onu4fpzTwznMous7mhxtRQmaqyXOe1NiWVPE-_VdWkzAEYkbLUE1mJwpSccssLMNrUsgAtOD9Dl4PvPvi3HmKntr4PbYpULJdclrkUIqnYoDLBxxigVvvgdjocFCXqu1M1dKpSrvrpVB0SxAcoJnG7gfBn_Q_1BT3afG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493974966</pqid></control><display><type>article</type><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><source>SpringerNature Complete Journals</source><creator>Kumar, Manoj ; Varshney, Parul</creator><creatorcontrib>Kumar, Manoj ; Varshney, Parul</creatorcontrib><description>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</description><identifier>ISSN: 0369-8203</identifier><identifier>EISSN: 2250-1762</identifier><identifier>DOI: 10.1007/s40010-019-00655-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Computer simulation ; Convergence ; Criteria ; Matlab ; Molecular ; Multiscale analysis ; Optical and Plasma Physics ; Parameters ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Physics ; Research Article</subject><ispartof>Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65</ispartof><rights>The National Academy of Sciences, India 2020</rights><rights>The National Academy of Sciences, India 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</citedby><cites>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40010-019-00655-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40010-019-00655-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Varshney, Parul</creatorcontrib><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><title>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</title><addtitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</addtitle><description>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Matlab</subject><subject>Molecular</subject><subject>Multiscale analysis</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Research Article</subject><issn>0369-8203</issn><issn>2250-1762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWLQv4CrgejQ_M5lmKaX-QKuFWrchk9ypKdNJTWYW3fkOvqFPYnQEd97Nhcv5zuEehC4ouaKElNcxJ4SSjFCZESKKIjscoRFjBcloKdgxGhEuZDZhhJ-icYxbkqYoJRP5CG0e-x0EZ3SDV27XN7pzvsW-xi-6xRYCXvoGz9764b6Ort3gRd90bt8AXiUMIl5462oHFs9da2MHtvt8_1h61xodAC-ge_X2HJ3Uuokw_t1naH07e57eZ_Onu4fpzTwznMous7mhxtRQmaqyXOe1NiWVPE-_VdWkzAEYkbLUE1mJwpSccssLMNrUsgAtOD9Dl4PvPvi3HmKntr4PbYpULJdclrkUIqnYoDLBxxigVvvgdjocFCXqu1M1dKpSrvrpVB0SxAcoJnG7gfBn_Q_1BT3afG0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kumar, Manoj</creator><creator>Varshney, Parul</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><author>Kumar, Manoj ; Varshney, Parul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Matlab</topic><topic>Molecular</topic><topic>Multiscale analysis</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Varshney, Parul</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Varshney, Parul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</atitle><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle><stitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>91</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>0369-8203</issn><eissn>2250-1762</eissn><abstract>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40010-019-00655-y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0369-8203 |
ispartof | Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65 |
issn | 0369-8203 2250-1762 |
language | eng |
recordid | cdi_proquest_journals_2493974966 |
source | SpringerNature Complete Journals |
subjects | Algorithms Applied and Technical Physics Atomic Computer simulation Convergence Criteria Matlab Molecular Multiscale analysis Optical and Plasma Physics Parameters Perturbation Physics Physics and Astronomy Quantum Physics Research Article |
title | Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Van%20der%20Pol%20Equation%20Using%20Multiple%20Scales%20Modified%20Lindstedt%E2%80%93Poincare%20Method&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences,%20India,%20Section%20A,%20physical%20sciences&rft.au=Kumar,%20Manoj&rft.date=2021-03-01&rft.volume=91&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=0369-8203&rft.eissn=2250-1762&rft_id=info:doi/10.1007/s40010-019-00655-y&rft_dat=%3Cproquest_cross%3E2493974966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493974966&rft_id=info:pmid/&rfr_iscdi=true |