Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method

In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65
Hauptverfasser: Kumar, Manoj, Varshney, Parul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 55
container_title Proceedings of the National Academy of Sciences, India, Section A, physical sciences
container_volume 91
creator Kumar, Manoj
Varshney, Parul
description In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.
doi_str_mv 10.1007/s40010-019-00655-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493974966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493974966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4CrgejQ_M5lmKaX-QKuFWrchk9ypKdNJTWYW3fkOvqFPYnQEd97Nhcv5zuEehC4ouaKElNcxJ4SSjFCZESKKIjscoRFjBcloKdgxGhEuZDZhhJ-icYxbkqYoJRP5CG0e-x0EZ3SDV27XN7pzvsW-xi-6xRYCXvoGz9764b6Ort3gRd90bt8AXiUMIl5462oHFs9da2MHtvt8_1h61xodAC-ge_X2HJ3Uuokw_t1naH07e57eZ_Onu4fpzTwznMous7mhxtRQmaqyXOe1NiWVPE-_VdWkzAEYkbLUE1mJwpSccssLMNrUsgAtOD9Dl4PvPvi3HmKntr4PbYpULJdclrkUIqnYoDLBxxigVvvgdjocFCXqu1M1dKpSrvrpVB0SxAcoJnG7gfBn_Q_1BT3afG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493974966</pqid></control><display><type>article</type><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><source>SpringerNature Complete Journals</source><creator>Kumar, Manoj ; Varshney, Parul</creator><creatorcontrib>Kumar, Manoj ; Varshney, Parul</creatorcontrib><description>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</description><identifier>ISSN: 0369-8203</identifier><identifier>EISSN: 2250-1762</identifier><identifier>DOI: 10.1007/s40010-019-00655-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Computer simulation ; Convergence ; Criteria ; Matlab ; Molecular ; Multiscale analysis ; Optical and Plasma Physics ; Parameters ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Physics ; Research Article</subject><ispartof>Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65</ispartof><rights>The National Academy of Sciences, India 2020</rights><rights>The National Academy of Sciences, India 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</citedby><cites>FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40010-019-00655-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40010-019-00655-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Varshney, Parul</creatorcontrib><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><title>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</title><addtitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</addtitle><description>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Matlab</subject><subject>Molecular</subject><subject>Multiscale analysis</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Research Article</subject><issn>0369-8203</issn><issn>2250-1762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWLQv4CrgejQ_M5lmKaX-QKuFWrchk9ypKdNJTWYW3fkOvqFPYnQEd97Nhcv5zuEehC4ouaKElNcxJ4SSjFCZESKKIjscoRFjBcloKdgxGhEuZDZhhJ-icYxbkqYoJRP5CG0e-x0EZ3SDV27XN7pzvsW-xi-6xRYCXvoGz9764b6Ort3gRd90bt8AXiUMIl5462oHFs9da2MHtvt8_1h61xodAC-ge_X2HJ3Uuokw_t1naH07e57eZ_Onu4fpzTwznMous7mhxtRQmaqyXOe1NiWVPE-_VdWkzAEYkbLUE1mJwpSccssLMNrUsgAtOD9Dl4PvPvi3HmKntr4PbYpULJdclrkUIqnYoDLBxxigVvvgdjocFCXqu1M1dKpSrvrpVB0SxAcoJnG7gfBn_Q_1BT3afG0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kumar, Manoj</creator><creator>Varshney, Parul</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</title><author>Kumar, Manoj ; Varshney, Parul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4c1ccfebcbbd3a4fac71934019bb874ee20997a89b65c7313d35ecacf95ea633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Matlab</topic><topic>Molecular</topic><topic>Multiscale analysis</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Varshney, Parul</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Varshney, Parul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method</atitle><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle><stitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>91</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>0369-8203</issn><eissn>2250-1762</eissn><abstract>In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40010-019-00655-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0369-8203
ispartof Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65
issn 0369-8203
2250-1762
language eng
recordid cdi_proquest_journals_2493974966
source SpringerNature Complete Journals
subjects Algorithms
Applied and Technical Physics
Atomic
Computer simulation
Convergence
Criteria
Matlab
Molecular
Multiscale analysis
Optical and Plasma Physics
Parameters
Perturbation
Physics
Physics and Astronomy
Quantum Physics
Research Article
title Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Van%20der%20Pol%20Equation%20Using%20Multiple%20Scales%20Modified%20Lindstedt%E2%80%93Poincare%20Method&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences,%20India,%20Section%20A,%20physical%20sciences&rft.au=Kumar,%20Manoj&rft.date=2021-03-01&rft.volume=91&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=0369-8203&rft.eissn=2250-1762&rft_id=info:doi/10.1007/s40010-019-00655-y&rft_dat=%3Cproquest_cross%3E2493974966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493974966&rft_id=info:pmid/&rfr_iscdi=true