Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare Method

In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2021-03, Vol.91 (1), p.55-65
Hauptverfasser: Kumar, Manoj, Varshney, Parul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an efficient perturbation algorithm combining the method of Multiple Scales and Modified Lindstedt–Poincare Techniques is proposed to solve the equation of Van der Pol oscillator with very strong nonlinearity. This algorithm combines the advantages of both methods. Solution of Van der Pol equation by the Multiple Scales Modified Lindstedt–Poincare (MSMLP) method is compared with the Multiple Scales method and numerical solution using MATLAB 7.8. The convergence criterion for the solution by Multiple Scales and MSMLP methods is discussed and shown that Multiple Scales method fails the convergence criterion for large values of small parameter, while MSMLP method satisfies the convergence criterion for both small and large values. Numerical simulation has been performed in MATLAB 7.8 for different values of small parameter to prove the efficiency and accuracy of the proposed method.
ISSN:0369-8203
2250-1762
DOI:10.1007/s40010-019-00655-y