Carbon-based materials as antistatic agents for the production of antistatic packaging: a review

Antistatic packaging is largely used in the electronic industry to avoid damage in electronic components caused by electrostatic discharge (EDS), generated by friction during storage and transportation processes. Antistatic packages are commonly produced with electrically insulating polymeric matric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-02, Vol.32 (4), p.3929-3947
Hauptverfasser: de Souza Vieira, Leonardo, dos Anjos, Erick Gabriel Ribeiro, Verginio, Gleice Ellen Almeida, Oyama, Isabela Cesar, Braga, Natália Ferreira, da Silva, Thaís Ferreira, Montagna, Larissa Stieven, Rezende, Mirabel Cerqueira, Passador, Fabio Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antistatic packaging is largely used in the electronic industry to avoid damage in electronic components caused by electrostatic discharge (EDS), generated by friction during storage and transportation processes. Antistatic packages are commonly produced with electrically insulating polymeric matrices, indicating the need for the use of antistatic agents to impart dissipative properties to these materials and to permit the conduction of electrons through their structures. Carbon-based fillers like carbon black, graphite, glassy carbon, carbon nanotubes, and graphene have been successfully used for the production of polymeric composites with interesting and promising electrical properties, as it is indicated by the increasing numbers of works reported in the literature related to this research area in the past few years. In this way, this review article presents the latest advances related to the use of carbon-based materials in the development of new polymeric composites with dissipative properties, showing the recent approaches used for the production of antistatic packaging.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-020-05178-6