Smart Driver Drowsiness Detection Model Based on Analytic Hierarchy Process

This paper proposes a smart driver drowsiness detection (SDDD) model for vehicles. The SDDD monitors a driver's heart rate variability (HRV) through electrocardiography (ECG) in real time to detect driver drowsiness. The SDDD processes the data of HRV and ECG to obtain a set of parameters with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2021-01, Vol.33 (1), p.485
Hauptverfasser: Chang, Ting-Cheng, Wu, Min-Hao, Kim, Phan-Zhu, Yu, Ming-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a smart driver drowsiness detection (SDDD) model for vehicles. The SDDD monitors a driver's heart rate variability (HRV) through electrocardiography (ECG) in real time to detect driver drowsiness. The SDDD processes the data of HRV and ECG to obtain a set of parameters with time-domain analysis, frequency-domain analysis, detrended fluctuation analysis, approximate entropy, and sample entropy. In the process, a machine learning algorithm analyzes the parameters to detect driver drowsiness. The SDDD optimizes critical features with the analytic hierarchy process (AHP), which uses a feature extraction method through an iterative procedure. It is found that the SDDD in this study detects the level of driver drowsiness with higher sensitivity than previous models.
ISSN:0914-4935
DOI:10.18494/SAM.2021.3034