Smart Driver Drowsiness Detection Model Based on Analytic Hierarchy Process
This paper proposes a smart driver drowsiness detection (SDDD) model for vehicles. The SDDD monitors a driver's heart rate variability (HRV) through electrocardiography (ECG) in real time to detect driver drowsiness. The SDDD processes the data of HRV and ECG to obtain a set of parameters with...
Gespeichert in:
Veröffentlicht in: | Sensors and materials 2021-01, Vol.33 (1), p.485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a smart driver drowsiness detection (SDDD) model for vehicles. The SDDD monitors a driver's heart rate variability (HRV) through electrocardiography (ECG) in real time to detect driver drowsiness. The SDDD processes the data of HRV and ECG to obtain a set of parameters with time-domain analysis, frequency-domain analysis, detrended fluctuation analysis, approximate entropy, and sample entropy. In the process, a machine learning algorithm analyzes the parameters to detect driver drowsiness. The SDDD optimizes critical features with the analytic hierarchy process (AHP), which uses a feature extraction method through an iterative procedure. It is found that the SDDD in this study detects the level of driver drowsiness with higher sensitivity than previous models. |
---|---|
ISSN: | 0914-4935 |
DOI: | 10.18494/SAM.2021.3034 |