Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)

•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2021-01, Vol.326, p.128983, Article 128983
Hauptverfasser: Wongrat, Ekasiddh, Nuengnit, Thiranuch, Panyathip, Rangsan, Chanlek, Narong, Hongsith, Niyom, Choopun, Supab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in the ZnO and the OH stretching of GQDs.•Ammonia sensor improvement is due to more oxygen-containing groups of COOH in ZnO:GQDs heterojunction. This paper presents a highly selective ammonia sensor based on ZnO nanostructures combined with graphene quantum dots (GQDs). Novel graphene quantum dots (GQDs) have an average lateral size distribution of 2.6 nm. Various amounts of GQDs were combined with the ZnO nanostructure surfaces. Prior to the ZnO:GQDs investigation, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to intensively characterize the surface morphologies, existence of functional groups, and chemical compositions. ZnO:GQD heterojunctions are crucial candidate materials due to their highly selective response to ammonia (NH3) vapor. The ammonia sensing characteristics of bare ZnO and ZnO:GQDs sensors at room temperature were systematically investigated via exposure to acetone and ethanol vapor. The ammonia sensing results show that ZnO:GQDs sensors with a volume of 15 μL have optimum sensor responses at an ammonia concentration of 1000 ppm with a value of 6047. The ammonia sensing properties of ZnO:GQDs sensors are due to the GQDs’ carboxyl and hydroxyl groups, which produce more oxygen-containing groups leading to a high H+ molecule density. This further contributes to their highly responsive and selective performance for sensing ammonia at room temperature.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2020.128983