Open Information Extraction from Texts: Part II. Extraction of Semantic Relationships Using Unsupervised Machine Learning

In this paper we discuss open information extraction from natural language texts. We present an approach to extraction of semantic relationships using unsupervised machine learning. The presented approach is based on deep clustering methods in which the clusterization algorithm is integrated in a mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific and technical information processing 2020-12, Vol.47 (6), p.340-347
Hauptverfasser: Shelmanov, A. O., Devyatkin, D. A., Isakov, V. A., Smirnov, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we discuss open information extraction from natural language texts. We present an approach to extraction of semantic relationships using unsupervised machine learning. The presented approach is based on deep clustering methods in which the clusterization algorithm is integrated in a multi-layer auto-encoder neural network. This method allows one to generalize surface relationships (triplets) into semantic relationships. This paper also provides a method of surface relationship extraction.
ISSN:0147-6882
1934-8118
DOI:10.3103/S0147688220060076