Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys
Concept of complex processing of chlorinated hydrocarbons, involving catalytic decomposition of 1,2-dichloroethane on Ni–M alloys to obtain a carbon nanomaterial (CNM) showing high performance in adsorption treatment of water to remove 1,2-dichlorobenzene, was presented. A series of finely dispersed...
Gespeichert in:
Veröffentlicht in: | Russian journal of applied chemistry 2020-12, Vol.93 (12), p.1873-1882 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concept of complex processing of chlorinated hydrocarbons, involving catalytic decomposition of 1,2-dichloroethane on Ni–M alloys to obtain a carbon nanomaterial (CNM) showing high performance in adsorption treatment of water to remove 1,2-dichlorobenzene, was presented. A series of finely dispersed Ni–Pd (5 wt %) and Ni–Mo (5 wt %) alloys were synthesized and studied. The samples were studied as catalysts in decomposition of C
2
H
4
Cl
2
vapor at 600°С to obtain a carbon nanomaterial. The addition of 5 wt % second metal leads to an increase in the yield of the carbon nanomaterial from 20.1 to 25.4 (Ni–Pd) and 31.8 g
CNM
g
–1
cat
(Ni–Mo). Analysis by electron microscopy and Raman spectroscopy shows that the carbon product consists of nanofibers of segmented structure, constituted by a poorly ordered graphite phase. The specific surface area of the carbon nanomaterial is 230–280 m
2
g
–1
. The CNM/Ni, CNM/Ni–Pd, and CNM/Ni–Mo samples obtained were tested as adsorbents for water treatment to remove dissolved 1,2-dichlorobenzene (
с
0
= 73–880 μM) in the batch mode. The 1,2-dichlorobenzene adsorption isotherms were constructed. The degree of filling of the carbon nanomaterial surface with the adsorbate at equilibrium is 43–47%, exceeding by a factor of more than 2 the utilization efficiency of AG-2000 activated carbon (
S
BET
= 1230 m
2
g
–1
). |
---|---|
ISSN: | 1070-4272 1608-3296 |
DOI: | 10.1134/S1070427220120095 |