On finite factorized groups with permutable subgroups of factors
Two subgroups A and B of a group G are called msp-permutable if the following statements hold: AB is a subgroup of G ; the subgroups P and Q are mutually permutable, where P is an arbitrary Sylow p -subgroup of A and Q is an arbitrary Sylow q -subgroup of B , p ≠ q . In the present paper, we...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2021-03, Vol.116 (3), p.241-249 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | Archiv der Mathematik |
container_volume | 116 |
creator | Monakhov, Victor S. Trofimuk, Alexander A. |
description | Two subgroups
A
and
B
of a group
G
are called msp-permutable if the following statements hold:
AB
is a subgroup of
G
; the subgroups
P
and
Q
are mutually permutable, where
P
is an arbitrary Sylow
p
-subgroup of
A
and
Q
is an arbitrary Sylow
q
-subgroup of
B
,
p
≠
q
. In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved. |
doi_str_mv | 10.1007/s00013-020-01535-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493852586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493852586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f37bbde898067735c4fcbb93bdd97255926ca02adbe562f5b9b123bfca1e0cef3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJZtMmN2XxHwh7UfAWkjRZu-y2NWkR_fRGu-DN0zC833vDPELOGVwygOoqAQBDChwoMIGC4gGZsUVepUJ5SGZZRyqlej0mJyltMs1lpWbketUWoWmbwRfBuKGLzZevi3Xsxj4VH83wVvQ-7sbB2K0v0mj3Shf2eDolR8Fskz_bzzl5ubt9Xj7Qp9X94_LmiTpkaqABK2trL5WEsqpQuEVw1iq0da0qLoTipTPATW29KHkQVlnG0QZnmAfnA87JxZTbx-599GnQm26MbT6p-SL_KLiQZab4RLnYpRR90H1sdiZ-agb6pyk9NaVzU_q3KY3ZhJMpZbhd-_gX_Y_rGzlYbJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493852586</pqid></control><display><type>article</type><title>On finite factorized groups with permutable subgroups of factors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Monakhov, Victor S. ; Trofimuk, Alexander A.</creator><creatorcontrib>Monakhov, Victor S. ; Trofimuk, Alexander A.</creatorcontrib><description>Two subgroups
A
and
B
of a group
G
are called msp-permutable if the following statements hold:
AB
is a subgroup of
G
; the subgroups
P
and
Q
are mutually permutable, where
P
is an arbitrary Sylow
p
-subgroup of
A
and
Q
is an arbitrary Sylow
q
-subgroup of
B
,
p
≠
q
. In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-020-01535-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Archiv der Mathematik, 2021-03, Vol.116 (3), p.241-249</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f37bbde898067735c4fcbb93bdd97255926ca02adbe562f5b9b123bfca1e0cef3</citedby><cites>FETCH-LOGICAL-c319t-f37bbde898067735c4fcbb93bdd97255926ca02adbe562f5b9b123bfca1e0cef3</cites><orcidid>0000-0003-1262-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-020-01535-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-020-01535-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Trofimuk, Alexander A.</creatorcontrib><title>On finite factorized groups with permutable subgroups of factors</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>Two subgroups
A
and
B
of a group
G
are called msp-permutable if the following statements hold:
AB
is a subgroup of
G
; the subgroups
P
and
Q
are mutually permutable, where
P
is an arbitrary Sylow
p
-subgroup of
A
and
Q
is an arbitrary Sylow
q
-subgroup of
B
,
p
≠
q
. In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJZtMmN2XxHwh7UfAWkjRZu-y2NWkR_fRGu-DN0zC833vDPELOGVwygOoqAQBDChwoMIGC4gGZsUVepUJ5SGZZRyqlej0mJyltMs1lpWbketUWoWmbwRfBuKGLzZevi3Xsxj4VH83wVvQ-7sbB2K0v0mj3Shf2eDolR8Fskz_bzzl5ubt9Xj7Qp9X94_LmiTpkaqABK2trL5WEsqpQuEVw1iq0da0qLoTipTPATW29KHkQVlnG0QZnmAfnA87JxZTbx-599GnQm26MbT6p-SL_KLiQZab4RLnYpRR90H1sdiZ-agb6pyk9NaVzU_q3KY3ZhJMpZbhd-_gX_Y_rGzlYbJ0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Monakhov, Victor S.</creator><creator>Trofimuk, Alexander A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1262-7401</orcidid></search><sort><creationdate>20210301</creationdate><title>On finite factorized groups with permutable subgroups of factors</title><author>Monakhov, Victor S. ; Trofimuk, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f37bbde898067735c4fcbb93bdd97255926ca02adbe562f5b9b123bfca1e0cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Trofimuk, Alexander A.</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monakhov, Victor S.</au><au>Trofimuk, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On finite factorized groups with permutable subgroups of factors</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>116</volume><issue>3</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>Two subgroups
A
and
B
of a group
G
are called msp-permutable if the following statements hold:
AB
is a subgroup of
G
; the subgroups
P
and
Q
are mutually permutable, where
P
is an arbitrary Sylow
p
-subgroup of
A
and
Q
is an arbitrary Sylow
q
-subgroup of
B
,
p
≠
q
. In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-020-01535-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1262-7401</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-889X |
ispartof | Archiv der Mathematik, 2021-03, Vol.116 (3), p.241-249 |
issn | 0003-889X 1420-8938 |
language | eng |
recordid | cdi_proquest_journals_2493852586 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Subgroups |
title | On finite factorized groups with permutable subgroups of factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20finite%20factorized%20groups%20with%20permutable%20subgroups%20of%20factors&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Monakhov,%20Victor%20S.&rft.date=2021-03-01&rft.volume=116&rft.issue=3&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-020-01535-3&rft_dat=%3Cproquest_cross%3E2493852586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493852586&rft_id=info:pmid/&rfr_iscdi=true |