On finite factorized groups with permutable subgroups of factors

Two subgroups A and B of a group  G are called msp-permutable if the following statements hold: AB  is a subgroup of  G ; the subgroups P and Q are mutually permutable, where P  is an arbitrary Sylow p -subgroup of  A and Q  is an arbitrary Sylow q -subgroup of  B , p ≠ q . In the present paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2021-03, Vol.116 (3), p.241-249
Hauptverfasser: Monakhov, Victor S., Trofimuk, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two subgroups A and B of a group  G are called msp-permutable if the following statements hold: AB  is a subgroup of  G ; the subgroups P and Q are mutually permutable, where P  is an arbitrary Sylow p -subgroup of  A and Q  is an arbitrary Sylow q -subgroup of  B , p ≠ q . In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-020-01535-3