A wave propagation model with the Biot and the fractional viscoelastic mechanisms

Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms. In the Biot theory, energy loss only includes the frictional dissipation between the solid phase and the fluid phase, resulting in underestimation of the dispersion and attenuation of the waves in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2021-03, Vol.64 (3), p.364-376
Hauptverfasser: Yang, Jiaming, Yang, Dinghui, Han, Hongwei, Qiu, Lingyun, Cheng, Yuanfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms. In the Biot theory, energy loss only includes the frictional dissipation between the solid phase and the fluid phase, resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range. To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band, we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism, and finally propose a new wave propagation model. Unlike the Biot model, the proposed model includes the intrinsic dissipation of the solid frame. We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P- and S-waves using several numerical experiments. Furthermore, we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model. The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-020-9668-5