Risk Factors and Comorbidities Associated to Cardiovascular Disease in Qatar: A Machine Learning Based Case-Control Study

Cardiovascular disease (CVD) is reported to be the leading cause of mortality in the middle eastern countries, including Qatar. But no comprehensive study has been conducted on the Qatar specific CVD risk factors identification. The objective of this case-control study was to develop machine learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.29929-29941
Hauptverfasser: Al-Absi, Hamada R. H., Refaee, Mahmoud Ahmed, Rehman, Atiq Ur, Islam, Mohammad Tariqul, Belhaouari, Samir Brahim, Alam, Tanvir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular disease (CVD) is reported to be the leading cause of mortality in the middle eastern countries, including Qatar. But no comprehensive study has been conducted on the Qatar specific CVD risk factors identification. The objective of this case-control study was to develop machine learning (ML) model distinguishing healthy individuals from people having CVD, which could ultimately reveal the list of potential risk factors associated to CVD in Qatar. To the best of our knowledge, this study considered the largest collection of biomedical measurements representing the anthropometric measurements, clinical biomarkers, bioimpedance, spirometry, VICORDER readings, and behavioral factors of the CVD group from Qatar Biobank (QBB). CatBoost model achieved 93% accuracy, thereby outperforming the existing model for the same purpose. Interestingly, combining multimodal datasets into the proposed ML model outperformed the ML model built upon currently known risk factors for CVD, emphasizing the importance of incorporating other clinical biomarkers into consideration for CVD diagnosis plan. The ablation study on the multimodal dataset from QBB revealed that physio-clinical and bioimpedance measurements have the most distinguishing power to classify these two groups irrespective of gender and age of the participants. Multiple feature subset selection techniques confirmed known CVD risk factors (blood pressure, lipid profile, smoking, sedentary life, and diabetes), and identified potential novel risk factors linked to CVD-related comorbidities such as renal disorder (e.g., creatinine, uric acid, homocysteine, albumin), atherosclerosis (intima media thickness), hypercoagulable state (fibrinogen), and liver function (e.g., alkaline phosphate, gamma-glutamyl transferase). Moreover, the inclusion of the proposed novel factors into the ML model provides better performance than the model with traditional known risk factors for CVD. The association of the proposed risk factors and comorbidities are required to be investigated in clinical setup to understand their role in CVD better.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3059469