An empirical study on the parsimony and descriptive power of TARMA models

In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2021-03, Vol.30 (1), p.109-137
1. Verfasser: Goracci, Greta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 109
container_title Statistical methods & applications
container_volume 30
creator Goracci, Greta
description In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR( p ), with possibly large autoregressive order p . Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR( p ) models even when p is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.
doi_str_mv 10.1007/s10260-020-00516-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493490881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493490881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJZ9NjWfxYWBFkBW8hJql22TY1aZX993a3gjcPwwzM887Ag9AlgWsCkN8kAlRCBnQsEERm6gjNiCQsKxR5PT7MKqOCwCk6S2kDwBjjbIaWZYt909WxtmaLUz-4HQ4t7j887kxMdRPaHTatw84nG-uur7_GTfj2EYcKr8vnxxI3wfltOkcnldkmf_Hb5-jl7na9eMhWT_fLRbnKLBO0z7ywTjhT0DfOJXjIrXQScsmYAukrIavcGEecEMxyyakFJytgPFfAzJ6bo6vpbhfD5-BTrzdhiO34UlNeMF6AUmSk6ETZGFKKvtJdrBsTd5qA3ivTkzI9KtMHZVqNITaF0gi37z7-nf4n9QN6zG0T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493490881</pqid></control><display><type>article</type><title>An empirical study on the parsimony and descriptive power of TARMA models</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Goracci, Greta</creator><creatorcontrib>Goracci, Greta</creatorcontrib><description>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR( p ), with possibly large autoregressive order p . Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR( p ) models even when p is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-020-00516-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive models ; Autoregressive moving-average models ; Autoregressive processes ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Empirical analysis ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Sunspots ; Time series</subject><ispartof>Statistical methods &amp; applications, 2021-03, Vol.30 (1), p.109-137</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</citedby><cites>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</cites><orcidid>0000-0001-5212-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-020-00516-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-020-00516-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Goracci, Greta</creatorcontrib><title>An empirical study on the parsimony and descriptive power of TARMA models</title><title>Statistical methods &amp; applications</title><addtitle>Stat Methods Appl</addtitle><description>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR( p ), with possibly large autoregressive order p . Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR( p ) models even when p is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</description><subject>Autoregressive models</subject><subject>Autoregressive moving-average models</subject><subject>Autoregressive processes</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Sunspots</subject><subject>Time series</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJZ9NjWfxYWBFkBW8hJql22TY1aZX993a3gjcPwwzM887Ag9AlgWsCkN8kAlRCBnQsEERm6gjNiCQsKxR5PT7MKqOCwCk6S2kDwBjjbIaWZYt909WxtmaLUz-4HQ4t7j887kxMdRPaHTatw84nG-uur7_GTfj2EYcKr8vnxxI3wfltOkcnldkmf_Hb5-jl7na9eMhWT_fLRbnKLBO0z7ywTjhT0DfOJXjIrXQScsmYAukrIavcGEecEMxyyakFJytgPFfAzJ6bo6vpbhfD5-BTrzdhiO34UlNeMF6AUmSk6ETZGFKKvtJdrBsTd5qA3ivTkzI9KtMHZVqNITaF0gi37z7-nf4n9QN6zG0T</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Goracci, Greta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5212-0539</orcidid></search><sort><creationdate>20210301</creationdate><title>An empirical study on the parsimony and descriptive power of TARMA models</title><author>Goracci, Greta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Autoregressive moving-average models</topic><topic>Autoregressive processes</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Sunspots</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goracci, Greta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goracci, Greta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical study on the parsimony and descriptive power of TARMA models</atitle><jtitle>Statistical methods &amp; applications</jtitle><stitle>Stat Methods Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>109</spage><epage>137</epage><pages>109-137</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR( p ), with possibly large autoregressive order p . Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR( p ) models even when p is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-020-00516-8</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5212-0539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2510
ispartof Statistical methods & applications, 2021-03, Vol.30 (1), p.109-137
issn 1618-2510
1613-981X
language eng
recordid cdi_proquest_journals_2493490881
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Autoregressive models
Autoregressive moving-average models
Autoregressive processes
Chemistry and Earth Sciences
Computer Science
Economics
Empirical analysis
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Original Paper
Physics
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Sunspots
Time series
title An empirical study on the parsimony and descriptive power of TARMA models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20study%20on%20the%20parsimony%20and%20descriptive%20power%20of%20TARMA%20models&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Goracci,%20Greta&rft.date=2021-03-01&rft.volume=30&rft.issue=1&rft.spage=109&rft.epage=137&rft.pages=109-137&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-020-00516-8&rft_dat=%3Cproquest_cross%3E2493490881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493490881&rft_id=info:pmid/&rfr_iscdi=true