An empirical study on the parsimony and descriptive power of TARMA models
In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2021-03, Vol.30 (1), p.109-137 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Statistical methods & applications |
container_volume | 30 |
creator | Goracci, Greta |
description | In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR(
p
), with possibly large autoregressive order
p
. Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR(
p
) models even when
p
is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature. |
doi_str_mv | 10.1007/s10260-020-00516-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493490881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493490881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJZ9NjWfxYWBFkBW8hJql22TY1aZX993a3gjcPwwzM887Ag9AlgWsCkN8kAlRCBnQsEERm6gjNiCQsKxR5PT7MKqOCwCk6S2kDwBjjbIaWZYt909WxtmaLUz-4HQ4t7j887kxMdRPaHTatw84nG-uur7_GTfj2EYcKr8vnxxI3wfltOkcnldkmf_Hb5-jl7na9eMhWT_fLRbnKLBO0z7ywTjhT0DfOJXjIrXQScsmYAukrIavcGEecEMxyyakFJytgPFfAzJ6bo6vpbhfD5-BTrzdhiO34UlNeMF6AUmSk6ETZGFKKvtJdrBsTd5qA3ivTkzI9KtMHZVqNITaF0gi37z7-nf4n9QN6zG0T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493490881</pqid></control><display><type>article</type><title>An empirical study on the parsimony and descriptive power of TARMA models</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Goracci, Greta</creator><creatorcontrib>Goracci, Greta</creatorcontrib><description>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR(
p
), with possibly large autoregressive order
p
. Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR(
p
) models even when
p
is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-020-00516-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive models ; Autoregressive moving-average models ; Autoregressive processes ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Empirical analysis ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Sunspots ; Time series</subject><ispartof>Statistical methods & applications, 2021-03, Vol.30 (1), p.109-137</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</citedby><cites>FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</cites><orcidid>0000-0001-5212-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-020-00516-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-020-00516-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Goracci, Greta</creatorcontrib><title>An empirical study on the parsimony and descriptive power of TARMA models</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR(
p
), with possibly large autoregressive order
p
. Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR(
p
) models even when
p
is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</description><subject>Autoregressive models</subject><subject>Autoregressive moving-average models</subject><subject>Autoregressive processes</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Sunspots</subject><subject>Time series</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJZ9NjWfxYWBFkBW8hJql22TY1aZX993a3gjcPwwzM887Ag9AlgWsCkN8kAlRCBnQsEERm6gjNiCQsKxR5PT7MKqOCwCk6S2kDwBjjbIaWZYt909WxtmaLUz-4HQ4t7j887kxMdRPaHTatw84nG-uur7_GTfj2EYcKr8vnxxI3wfltOkcnldkmf_Hb5-jl7na9eMhWT_fLRbnKLBO0z7ywTjhT0DfOJXjIrXQScsmYAukrIavcGEecEMxyyakFJytgPFfAzJ6bo6vpbhfD5-BTrzdhiO34UlNeMF6AUmSk6ETZGFKKvtJdrBsTd5qA3ivTkzI9KtMHZVqNITaF0gi37z7-nf4n9QN6zG0T</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Goracci, Greta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5212-0539</orcidid></search><sort><creationdate>20210301</creationdate><title>An empirical study on the parsimony and descriptive power of TARMA models</title><author>Goracci, Greta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-e5cd5da92b4460e07c6d607633806ef56f7aad1d553c4642c0d6f0347803a0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Autoregressive moving-average models</topic><topic>Autoregressive processes</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Sunspots</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goracci, Greta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goracci, Greta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical study on the parsimony and descriptive power of TARMA models</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>109</spage><epage>137</epage><pages>109-137</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR(
p
), with possibly large autoregressive order
p
. Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR(
p
) models even when
p
is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-020-00516-8</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5212-0539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2021-03, Vol.30 (1), p.109-137 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2493490881 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Autoregressive models Autoregressive moving-average models Autoregressive processes Chemistry and Earth Sciences Computer Science Economics Empirical analysis Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Original Paper Physics Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences Sunspots Time series |
title | An empirical study on the parsimony and descriptive power of TARMA models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20study%20on%20the%20parsimony%20and%20descriptive%20power%20of%20TARMA%20models&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Goracci,%20Greta&rft.date=2021-03-01&rft.volume=30&rft.issue=1&rft.spage=109&rft.epage=137&rft.pages=109-137&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-020-00516-8&rft_dat=%3Cproquest_cross%3E2493490881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493490881&rft_id=info:pmid/&rfr_iscdi=true |