An empirical study on the parsimony and descriptive power of TARMA models
In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2021-03, Vol.30 (1), p.109-137 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In linear time series analysis, the incorporation of the moving-average term in autoregressive models yields parsimony while retaining flexibility; in particular, the first order autoregressive moving-average model, ARMA(1,1) is notable since it retains a good approximating capability with just two parameters. In the same spirit, we assess empirically whether a similar result holds for threshold processes. First, we show that the first order threshold autoregressive moving-average process, TARMA(1,1) exhibits complex, high-dimensional, behaviour with parsimony, by comparing it with threshold autoregressive processes, TAR(
p
), with possibly large autoregressive order
p
. Second, we study the descriptive power of the TARMA(1,1) model with respect to the class of autoregressive models, seen as universal approximators: in several situations, the TARMA(1,1) model outperforms AR(
p
) models even when
p
is large. Lastly, we analyze two real world data sets: the sunspot number and the male US unemployment rate time series. In both cases, we show that TARMA models provide a better fit with respect to the best TAR models proposed in literature. |
---|---|
ISSN: | 1618-2510 1613-981X |
DOI: | 10.1007/s10260-020-00516-8 |