Machine-learning-assisted electron-spin readout of nitrogen-vacancy center in diamond

Machine learning is a powerful tool in finding hidden data patterns for quantum information processing. Here, we introduce this method into the optical readout of electron-spin states in diamond via single-photon collection and demonstrate improved readout precision at room temperature. The traditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-02, Vol.118 (8)
Hauptverfasser: Qian, Peng, Lin, Xue, Zhou, Feifei, Ye, Runchuan, Ji, Yunlan, Chen, Bing, Xie, Guangjun, Xu, Nanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning is a powerful tool in finding hidden data patterns for quantum information processing. Here, we introduce this method into the optical readout of electron-spin states in diamond via single-photon collection and demonstrate improved readout precision at room temperature. The traditional method of summing photon counts in a time gate loses all the timing information crudely. We find that changing the gate width can only optimize the contrast or the state variance, not both. In comparison, machine learning adaptively learns from time-resolved fluorescence data and offers the optimal data processing model that elaborately weights each time bin to maximize the extracted information. It is shown that our method can repair the processing result from imperfect data, reducing 7% in spin readout error while optimizing the contrast. Note that these improvements only involve recording photon time traces and consume no additional experimental time, and they are, thus, robust and free. Our machine learning method implies a wide range of applications in the precision measurement and optical detection of states.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0038590