Host-guest chemistry of giant molecular shape amphiphiles based on POSS-PDI conjugates
Giant shape amphiphiles (GSA) are giant molecules made with nano-building blocks that have distinct shapes. The incompatible packing behaviors of the nano-building blocks of GSA could create cavities within certain conformers of the GSA, but the host-guest chemistry of GSA has not been explored yet....
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-02, Vol.13 (7), p.4295-43 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Giant shape amphiphiles (GSA) are giant molecules made with nano-building blocks that have distinct shapes. The incompatible packing behaviors of the nano-building blocks of GSA could create cavities within certain conformers of the GSA, but the host-guest chemistry of GSA has not been explored yet. In this study, POSS-PDI-POSS (
PPP
), which is made by connecting two nano-cubes, isobutyl-polyhedral oligomeric silsesquioxanes (POSS), to a conjugated π-conjugated core, perylene diimide (PDI), is demonstrated as a novel acyclic synthetic host. In its bent conformer,
PPP
shows a cavity next to its PDI core.
Via
forming host-guest complexes with π-conjugated guests such as pyrene and perylene,
PPP
is found to transform from the bent-conformer into the extended-conformer, creating the steric features to accommodate guest molecules. Subsequent thermal annealing of the host-guest complexes removes the π-conjugated guests and restores the bent conformation and photophysical properties of
PPP
, which verifies that
PPP
, as a novel acyclic host, is capable of dynamic host-guest assembly. Moreover, the results prove that cavities at the molecular level can be created by connecting nano-building blocks with distinct shapes. This finding may inspire developments in the host-guest chemistry of GSA and nanomaterial innovation.
Giant shape amphiphiles (GSA) are giant molecules made with nano-building blocks that have distinct shapes. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d0nr08934f |