Internalization of Fluoride in Hydroxyapatite Nanoparticles
Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilatio...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-02, Vol.55 (4), p.2639-2651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilation of fluoride to bulk apatite lattice sites in addition to surface lattice sites. Pellets of HAP nanoparticles (NPs) were packed into a fixed-bed media filter to treat solutions containing 30 mg-F/L (1.58 mM) at pH 8, yielding an uptake of 15.97 ± 0.03 mg-F/g-HAP after 864 h. Solid-state 19F and 13C magic-angle spinning nuclear magnetic resonance spectroscopy demonstrated that all removed fluoride is apatitic. A transmission electron microscopy analysis of particle size distribution, morphology, and crystal habit resulted in the development of a model to quantify adsorption and total fluoride capacity. Low- and high-estimate median adsorption capacities were 2.40 and 6.90 mg-F/g-HAP, respectively. Discrepancies between experimental uptake and adsorption capacity indicate the range of F– that internalizes to satisfy conservation of mass. The model was developed to demonstrate that F– internalization in HAP NPs occurs under environmentally relevant conditions and as a tool to understand the extent of F– internalization in HAP NPs of any kind. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.0c07398 |